nature.com

Proliferation, cell cycle and apoptosis in cancer - Nature

  • ️Vousden, Karen H.
  • ️Tue May 01 2001
  • Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Oller, A. R., Rastogi, P., Morgenthaler, S. & Thilly, W. G. A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. Mutat. Res. 216, 149–161 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Pardee, A. B. G1 events and regulation of cell proliferation. Science 246, 603–608 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Roovers, K. & Assoian, R. K. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. BioEssays 22, 818–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Massague, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sangfelt, O., Erickson, S. & Grander, D. Mechanisms of interferon-induced cell cycle arrest. Front. Biosci. 5, D479–D487 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L. & Skoultchi, A. I. Coordinating cell proliferation and differentiation. Curr. Opin. Genet. Dev. 11, 91–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bach, S. P., Renehan, A. G. & Potten, C. S. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21, 469–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Booth, C. & Potten, C. S. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 105, 1493–1499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs, E. & Segre, J. A. Stem cells: a new lease on life. Cell 100, 143–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Raff, M. et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  • DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hunter, T. Signaling—2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Baudino, T. A. & Cleveland, J. L. The Max network gone mad. Mol. Cell. Biol. 21, 691–702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker, H. & Hafen, E. Genetic control of cell size. Curr. Opin. Genet. Dev. 10, 529–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Elend, M. & Eilers, M. Cell growth: downstream of Myc—to grow or to cycle? Curr. Biol. 9, R936–R938 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Dang, C. V. et al. Function of the c-Myc oncogenic transcription factor. Exp. Cell Res. 253, 63–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Pelengaris, S., Rudolph, B. & Littlewood, T. Action of Myc in vivo—proliferation and apoptosis. Curr. Opin. Genet. Dev. 10, 100–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gu, W. et al. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72, 309–324 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Lasorella, A., Noseda, M., Beyna, M. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Walczak, H. & Krammer, P. H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res. 256, 58–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden, M. G. et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl Acad. Sci. USA 97, 4666–4671 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Yu, H. & Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl Cancer Inst. 92, 1472–1489 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Stambolic, V., Mak, T. W. & Woodgett, J. R. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene 18, 6094–6103 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Maehama, T. & Dixon, J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bonneau, D. & Longy, M. Mutations of the human PTEN gene. Hum. Mutat. 16, 109–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kandel, E. S. & Hay, N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell Res. 253, 210–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Evan, G. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 63, 119–125 (1992).

    Article  Google Scholar 

  • Askew, D., Ashmun, R., Simmons, B. & Cleveland, J. Constitutive c-myc expression in IL-3-dependent myeloid cell line suppresses cycle arrest and accelerates apoptosis. Oncogene 6, 1915–1922 (1991).

    CAS  PubMed  Google Scholar 

  • Harrington, E. A., Fanidi, A. & Evan, G. I. Oncogenes and cell death. Curr. Opin. Genet. Dev. 4, 120–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Evan, G. & Littlewood, T. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3, 44–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Almasan, A. et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc. Natl Acad. Sci. USA 92, 5436–5440 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, B. & Lee, W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri, G. P., Itahana, K., Acosta, M. & Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell. Biol. 20, 273–285 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa, T. & Ruley, H. E. Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proc. Natl Acad. Sci. USA 85, 1519–1523 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Fanidi, A., Harrington, E. & Evan, G. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359, 554–556 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bissonnette, R., Echeverri, F., Mahboubi, A. & Green, D. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–554 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wagner, A. J., Small, M. B. & Hay, N. Myc-mediated apoptosis is blocked by ectopic expression of bcl-2. Mol. Cell. Biol. 13, 2432–2440 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington, E. A., Bennett, M. R., Fanidi, A. & Evan, G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13, 3286–3295 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking anti-apoptotic signaling pathways. Mol. Cell. 4, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Hueber, A.-O. et al. Requirement for the CD95 receptor-ligand pathway in c-Myc induced apoptosis. Science 278, 1305–1309 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Klefstrom, J. et al. c-Myc induces cellular susceptibility to the cytotoxic action of TNF-α. EMBO J. 13, 5442–5450 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz, W., Fulda, S., Jeremias, I., Debatin, K. M. & Schwab, M. MycN and IFNγ cooperate in apoptosis of human neuroblastoma cells. Oncogene 17, 339–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Woods, D. B. & Vousden, K. H. Regulation of p53 function. Exp. Cell Res. 264, 56–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Frame, S. et al. Epithelial carcinogenesis in the mouse: correlating the genetics and the biology. Phil. Trans. R. Soc. Lond. B 353, 839–845 (1998).

    Article  CAS  Google Scholar 

  • Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Maestro, R. et al. twist is a potential ongogene that inhibits apoptosis. Genes Dev. 13, 2207–2217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Esteller, M. et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 60, 129–133 (2000).

    CAS  PubMed  Google Scholar 

  • Robertson, K. D. & Jones, P. A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kemp, C. J., Donehower, L. A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Greenhalgh, D. A., Wang, X. J., Donehower, L. A. & Roop, D. R. Paradoxical tumor inhibitory effect of p53 loss in transgenic mice expressing epidermal-targeted v-rasHa, v-fos, or human transforming growth factor alpha. Cancer Res. 56, 4413–4423 (1996).

    CAS  PubMed  Google Scholar 

  • Wang, X. J., Greenhalgh, D. A., Donehower, L. A. & Roop, D. R. Cooperation between Ha-ras and fos or transforming growth factor alpha overcomes a paradoxic tumor-inhibitory effect of p53 loss in transgenic mouse epidermis. Mol. Carcinogenesis 29, 67–75 (2000).

    Article  CAS  Google Scholar 

  • Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Schmitt, C. A. & Lowe, S. W. Apoptosis and therapy. J. Pathol. 187, 127–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287, 1969–1973 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by myc in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Brandvold, K. A., Neiman, P. & Ruddell, A. Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene 19, 2780–2785 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Breit, S. et al. The N-myc oncogene in human neuroblastoma cells: down-regulation of an angiogenesis inhibitor identified as activin A. Cancer Res. 60, 4596–4601 (2000).

    CAS  PubMed  Google Scholar 

  • Ngo, C. V. et al. An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ. 11, 201–210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janz, A., Sevignani, C., Kenyon, K., Ngo, C. V. & Thomas-Tikhonenko, A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res. 28, 2268–2275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Dwyer, M. E. & Druker, B. J. Status of bcr-abl tyrosine kinase inhibitors in chronic myelogenous leukamia. Curr. Opin. Oncol. 12, 594–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Morin, M. J. From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene 19, 6574–6583 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Krek, W. VHL takes HIF's breath away. Nature Cell Biol. 2, E1–E3 (2000).

    Article  CAS  Google Scholar 

  • Huang, Y. Q., Li, J. J. & Karpatkin, S. Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway. J. Biol. Chem. 275, 6462–6468 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. N. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar