nature.com

Transcriptional regulation by the phosphorylation-dependent factor CREB - Nature Reviews Molecular Cell Biology

  • ️Montminy , Marc
  • ️Wed Aug 01 2001
  • Gonzalez, G. A. & Montminy, M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675?680 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara, M. et al. Coupling of hormonal stimulation and transcription via cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol. Cell. Biol. 13, 4852?4859 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G. & Goodman, R. H. Identification of a cyclic-AMP responsive element within the rat somatostatin gene. Proc. Natl Acad. Sci. USA 83, 6682?6686 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comb, M., Burnberg, N. C., Seascholtz, A., Herbert, E. & Goodman, H. M. A cyclic-AMP- and phorbol ester-inducible DNA element. Nature 323, 353?356 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Short, J. M., Wynshaw-Boris, A., Short, H. P. & Hanson, R. W. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains. J. Biol. Chem. 261, 9721?9726 (1986).

    CAS  PubMed  Google Scholar 

  • Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855?859 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Arias, J. et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226?228 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara, M. et al. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70, 105?113 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Wadzinski, B. et al. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol. Cell. Biol. 13, 2822?2834 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeffler, J. P., Meyer, T. E., Yun, Y., Jameson, J. L. & Habener, J. F. Cyclic-AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242, 1430?1432 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, G. A. et al. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337, 749?752 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Foulkes, N. S., Borrelli, E. & Sassone-Corsi, P. CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64, 739?749 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hai, T., Lin, F., Coukos, W. J. & Grren, M. R. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083?2090 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Brindle, P., Linke, S. & Montminy, M. Analysis of a PK-A dependent activator in CREB reveals a new role for the CREM family of repressors. Nature 364, 821?824 (1993).

    Article  CAS  PubMed  Google Scholar 

  • deGroot, R., Hertog, J. d., Vandenheede, J., Goris, J. & Sassone-Corsi, P. Multiple and cooperative phosphorylation events regulate the CREM activator function. EMBO J. 12, 3903?3911 (1993).

    Article  CAS  Google Scholar 

  • Quinn, P. G. Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J. Biol. Chem. 268, 16999?17009 (1993).

    CAS  PubMed  Google Scholar 

  • Foulkes, N. S. & Sassone-Corsi, P. More is better: activators and repressors from the same gene. Cell 68, 411?414 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Walker, W. H., Girardet, C. & Habener, J. F. Alternative exon splicing controls a translational switch from activator to repressor isoforms of transcription factor CREB during spermatogenesis. J. Biol. Chem. 271, 20145?20150 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Delmas, V., van der Hoorn, F., Mellstrom, B., Jegou, B. & Sassone-Corsi, P. Induction of CREM activator proteins in spermatids: down-stream targets and implications for haploid germ cell differentiation. Mol. Endocrinol. 7, 1502?1514 (1993).

    CAS  PubMed  Google Scholar 

  • Molina, C. S., Foulkes, N. S., Lalli, E. & Sassone-Corsi, P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75, 875?886 (1993).Defines mechanism by which induction of a repressor isoform of CREM (ICER) attenuates transcription of cAMP-responsive genes.

    Article  CAS  PubMed  Google Scholar 

  • Mazzucchelli, C. & Sassone-Corsi, P. The inducible cyclic adenosine monophosphate early repressor (ICER) in the pituitary intermediate lobe: role in the stress response. Mol. Cell. Endocrinol. 155, 101?113 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, D. et al. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl Acad. Sci. USA 95, 4481?4486 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blendy, J., Kaestner, K., Weinbauer, G., Nieschlag, E. & Schutz, G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162?165 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Nantel, F. et al. spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159?162 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Maldonado, R., Smadja, C., Mazucchelli, C., Sassone-Corsi, P. & Mazucchelli, C. Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc. Natl Acad. Sci. USA 96, 14094?14099 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummler, E. et al. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl Acad. Sci. USA 91, 5647?5651 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struthers, R. S., Vale, W. W., Arias, C., Sawchenko, P. E. & Montminy, M. R. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 350, 622?624 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Long, F., Schipani, E., Asahara, H., Kronenberg, H. & Montminy, M. The CREB family of activators is required for endochondral bone development. Development 128, 541?550 (2001).

    CAS  PubMed  Google Scholar 

  • Ionescu, A. M. et al. PTHrP modulates chondrocyte differentiation through AP-1 and CREB signaling. J. Biol. Chem. 276, 11639?11647 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Desdouets, C. et al. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM. Mol. Cell. Biol. 15, 3301?3309 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, R. J. et al. pp60(v-src) induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP response element-binding protein and activating transcription factor-2 in pp60(v-src) signaling in breast cancer cells. J. Biol. Chem. 274, 7341?7350 (1999).

    Article  CAS  PubMed  Google Scholar 

  • D'Amico, M. et al. The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3β and cAMP-responsive element-binding protein-dependent pathways. J. Biol. Chem. 275, 32649?32657 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A. & Ginty, D. D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358?2361 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286, 1358?1362 (1999).References 33 and 34 show a role of CREB in growth-factor-dependent cell survival and demonstrate an alternative non-cAMP pathway for CREB action.

    Article  CAS  PubMed  Google Scholar 

  • Xing, J., Ginty, D. & Greenberg, M. Coupling of the RAS?MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959?963 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ginty, D., Bonni, A. & Greenberg, M. Nerve growth factor activates a Ras dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77, 713?725 (1994).

    Article  PubMed  Google Scholar 

  • Bartsch, D., Casadio, A., Karl, K., Serodio, P. & Kandel, E. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211?223 (1998).Demonstrates the role of CREB in synaptic plasticity.

    Article  CAS  PubMed  Google Scholar 

  • Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59?68 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Yin, J. C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49?58 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Yin, J. C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107?115 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G. & Goodman, R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl Acad. Sci. USA 83, 6682?6686 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, K. K., Gonzalez, G. A., Biggs, W. H. III & Montminy, M. R. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334, 494?498 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Fink, J. S. et al. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc. Natl Acad. Sci. USA 85, 6662?6666 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig, J. C. et al. Consensus and variant cAMP?regulated enhancers have distinct CREB binding properties. J. Biol. Chem. 276, 11719?11728 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Tinti, C. et al. Structure/function relationship of the cAMP response element in tyrosine hydroxylase gene transcription. J. Biol. Chem. 272, 19158?19164 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. S., Park, E. A., Gurney, A. L., Roesler, W. J. & Hanson, R. W. Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements. J. Biol. Chem. 266, 19095?19102 (1991).

    CAS  PubMed  Google Scholar 

  • Quinn, P. G. & Granner, D. K. Cyclic AMP-dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP regulatory element. Mol. Cell. Biol. 10, 3357?3364 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan, L. & Scarpulla, R. C. Differential regulation of respiratory chain subunits by a CREB-dependent signal transduction pathway. Role of cyclic AMP in cytochrome c and COXIV gene expression. J. Biol. Chem. 269, 105?113 (1994).

    CAS  PubMed  Google Scholar 

  • Herzig, R. P., Scacco, S. & Scarpulla, R. C. Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c. J. Biol. Chem. 275, 13134?13141 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kwok, R. et al. Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 380, 642?646 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ahn, S. et al. A dominant negative inhibitor of CREB reveals that it is a general mediator stimulus-dependent transcription of c-fos. Mol. Cell. Biol. 18, 967?977 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X., Spiro, C., Owen, W. G. & McMurray, C. T. cAMP response element-binding protein monomers cooperatively assemble to form dimers on DNA. J. Biol. Chem. 273, 20820?20827 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Kohler, J. J., Metallo, S. J., Schneider, T. L. & Schepartz, A. DNA specificity enhanced by sequential binding of protein monomers. Proc. Natl Acad. Sci. USA 96, 11735?11739 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher, M. A., Goodman, R. H. & Brennan, R. G. The crystal structure of a CREB bZIP-SSCRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J. Biol. Chem. 275, 35242?35247 (2000).Structure of the CREB bZIP:CRE complex; suggests a possible role for magnesium in modulating CREB DNA binding activity.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, M. et al. Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J. 11, 3337?3346 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayall, T. P., Sheridan, P. L., Montminy, M. R. & Jones, K. A. Distinct roles for P-CREB and LEF-1 in TCR-α enhancer assembly and activation on chromatin templates in vitro. Genes Dev. 11, 887?899 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Weih, F., Stewart, A., Boshart, M., Nitsch, D. & Schutz, G. In vivo monitoring of a cAMP-stimulated DNA-binding activity. Genes Dev. 4, 1437?1449 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Wolfl, S., Martinez, C. & Majzoub, J. A. Inducible binding of cyclic adenosine 3′,5′-monophosphate (cAMP)-responsive element binding protein (CREB) to a cAMP-responsive promoter in vivo. Mol. Endocrinol. 13, 659?669 (1999).

    CAS  PubMed  Google Scholar 

  • Nichols, M. et al. Phosphorylation of CREB affect its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J. 11, 3337?3346 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommasi, S. & Pfeifer, G. In vivo structure of two divergent promoters at the human PCNA locus synthesis of antisense RNA and S-phase-dependent binding of E2F complexes in intron 1. J. Biol. Chem. 274, 27829?27838 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sibinga, N. et al. Interferon-mediated inhibition of cyclin A gene transcription is independent of individual cis-acting elements in the cyclin A promoter. J. Biol. Chem 274, 12139?12146 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Dey, A., Nebert, D. W. & Ozato, K. The AP-1 site and the cAMP- and serum response elements of the c-fos gene are constitutively occupied in vivo. DNA Cell Biol. 10, 537?544 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Iguchi-Ariga, S. M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612?619 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Tierney, R. J. et al. Methylation of transcription factor binding sites in the Epstein-Barr virus latent cycle promoter Wp coincides with promoter down-regulation during virus-induced B-cell transformation. J. Virol. 74, 10468?10479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannello, R. C. et al. Methylation-dependent silencing of the testis-specific Pdha-2 basal promoter occurs through selective targeting of an activating transcription factor/cAMP-responsive element-binding site. J. Biol. Chem. 275, 19603?19608 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Iannello, R. C. et al. Regulation of Pdha-2 expression is mediated by proximal promoter sequences and CpG methylation. Mol. Cell. Biol. 17, 612?619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weih, F., Nitsch, D., Reik, A., Schutz, G. & Becker, P. B. Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo. EMBO J. 10, 2559?2567 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, M. J., Paulssen, E. J., Seeler, J. S. & Gaynor, R. B. Protein domains involved in both in vivo and in vitro interactions between human T-cell leukemia virus type I tax and CREB. J. Virol. 69, 3420?3432 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, J. M., Sloan, L. S. & Schepartz, A. Conformation of Tax-response elements in the human T-cell leukemia virus type I promoter. Chem. Biol. 2, 819?826 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Connor, L. M. & Marriott, S. J. Sequences flanking the cAMP responsive core of the HTLV-I tax response elements influence CREB protease sensitivity. Virology 270, 328?336 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lundblad, J. R. et al. The human T-cell leukemia virus-1 transcriptional activator Tax enhances cAMP-responsive element-binding protein (CREB) binding activity through interactions with the DNA minor groove. J. Biol. Chem. 273, 19251?19259 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, T., Uchida, C., Anderson, S., Parvin, J. & Montminy, M. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11, 738?747 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Saluja, D., Vassallo, M. & Tanese, N. Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Mol. Cell. Biol. 18, 5734?5743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felinski, E. A. & Quinn, P. G. The CREB constitutive activation domain interacts with TATA-binding protein-associated factor 110 (TAF110) through specific hydrophobic residues in one of the three subdomains required for both activation and TAF110 binding. J. Biol. Chem. 274, 11672?11678 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ferreri, K., Gill, G. & Montminy, M. The cAMP regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl Acad. Sci. USA 91, 1210?1213 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, G., Pascal, E., Tseng, Z. & Tjian, R. A glutamine hydrophobic patch in transcription factor Sp1 contactsthe dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc. Natl Acad. Sci. USA 91, 192?196 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Lu, J. & Quinn, P. G. Distinct cAMP response element-binding protein (CREB) domains stimulate different steps in a concerted mechanism of transcription activation. Proc. Natl Acad. Sci. USA 97, 11292?11296 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felinski, E. A., Kim, J., Lu, J. & Quinn, P. G. Recruitment of an RNA polymerase II complex is mediated by the constitutive activation domain in CREB, independently of CREB phosphorylation. Mol. Cell. Biol. 21, 1001?1010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimohata, T. et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genet. 26, 29?36 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kwok, R. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223?226 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Parker, D. et al. Phosphorylation of CREB at Ser133 induces complex formation with CBP via a direct mechanism. Mol. Cell. Biol. 16, 694?703 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kee, B., Arias, J. & Montminy, M. Adaptor mediated recruitment of RNA polymerase II to a signal dependent activator. J. Biol. Chem. 271, 2373?2375 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Korzus, E. et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279, 703?707 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741?752 (1997).Structure of CREB:CBP complex using relevant interaction domains; explains how Ser133 phosphorylation regulates CREB activity.

    Article  CAS  PubMed  Google Scholar 

  • Fimia, G. M., De Cesare, D. & Sassone-Corsi, P. CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature 398, 165?169 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Fimia, G. M., De Cesare, D. & Sassone-Corsi, P. A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM. Mol. Cell. Biol. 20, 8613?8622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brindle, P. N. T., & Montminy, M. Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP. Proc. Natl Acad. Sci. USA 92, 10521?10525 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonni, A., Ginty, D. D., Dudek, H. & Greenberg, M. E. Serine133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol. Cell. Neurosci. 6, 168?183 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Du, K. & Montminy, M. CREB is a regulatory target for the protein kinase Akt/PKB*. J. Biol. Chem. 273, 32377?32379 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Deak, M., Clifton, A., Lucocq, J. & Alessi, D. Mitogen- and stress-activated protein kinase?1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426?4441 (1998).Describes the role of MSK-1 in promoting CREB phosphorylation in response to growth factor and stress signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, Y. et al. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15, 4629?4642 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, P., Enslen, H., Myung, P. & Maurer, R. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinase type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527?2539 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Matthews, R. et al. Calcium?calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 14, 6107?6116 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Cesare, D., Jacquot, S., Hanauer, A. & Sassone-Corsi, P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl Acad. Sci. USA 95, 12202?12207 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deak, M., Clifton, A. D., Lucocq, L. M. & Alessi, D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426?4441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur, J. S. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 482, 44?48 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Thompson, M. A., Ginty, D. D., Bonni, A. & Greenberg, M. E. L-type voltage-sensitive Ca2+ channel activation regulates c-fos transcription at multiple levels. J. Biol. Chem. 270, 4224?4235 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Brindle, P., Nakajima, T. & Montminy, M. Multiple PKA-regulated events are required for transcriptional induction by cAMP. Proc. Natl Acad. Sci. USA 92, 10521?10525 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, B., Bauer, A., Schutz, G. & Montminy, M. Stimulus-specific interaction between activator?coactivator cognates revealed with a novel complex-specific antiserum. J. Biol. Chem. 275, 8263?8266 (2000).Development of CREB:CBP complex antiserum to examine relative effects of cAMP and non-cAMP stimuli on transcriptional activation via CREB.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, B., Canetierri, L. & Montminy, M. Distinct effects of cAMP and mitogenic signals on CBP recruitment impart specificity to target gene activation via CREB. Proc. Natl Acad. Sci. USA (in the press).

  • Chawla, S., Hardingham, G. E., Quinn, D. R. & Bading, H. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281, 1505?1509 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Du, K., Asahara, H., Jhala, U., Wagner, B. & Montminy, M. Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo. Mol. Cell. Biol. 20, 4320?4327 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinaux, J. R. et al. Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol. Cell. Biol. 20, 1546?1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seternes, O. M., Johansen, B. & Moens, U. A dominant role for the Raf-MEK pathway in forskolin, 12-O-tetradecanoyl-phorbol acetate, and platelet-derived growth factor-induced CREB (cAMP-responsive element-binding protein) activation, uncoupled from serine 133 phosphorylation in NIH 3T3 cells. Mol. Endocrinol. 13, 1071?1083 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Parker, D. et al. Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol. Cell 2, 353?359 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Ernst, P., Wang, J., Huang, M., Goodman, R. H. & Korsmeyer, S. J. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol. Cell Biol. 21, 2249?2258 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhani, H., Styles, C. & Fink, G. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673?684 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Pugazhenthi, S. et al. Insulin-like growth factor I-mediated activation of the transcription factor cAMP response element-binding protein in PC12 cells. Involvement of p38 mitogen-activated protein kinase-mediated pathway. J. Biol. Chem. 274, 2829?2837 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Xing, J., Kornhauser, J. M., Xia, Z., Thiele, E. A. & Greenberg, M. E. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol. Cell. Biol. 18, 1946?1955 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, C. J. et al. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nature Cell Biol. 2, 666?668 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Beitner-Johnson, D., Rust, R. T., Hsieh, T. C. & Millhorn, D. E. Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells. Cell Signal. 13, 23?27 (2001).

    Article  CAS  PubMed  Google Scholar