nature.com

Myc and Max proteins possess distinct transcriptional activities - Nature

  • ️Eisenman, Robert N.
  • ️Thu Oct 01 1992
  • Letter
  • Published: 01 October 1992

Nature volume 359pages 426–429 (1992)Cite this article

Abstract

THE Myc family proteins are thought to be involved in transcription1,2 because they have both a carboxy-terminal basic–helix–loop–helix–zipper (bHLH-Z) domain, common to a large class of transcription factors3, and an amino-terminal fragment which, for c-Myc, has transactivating function when assayed in chimaeric constructs4. In addition, c-, N- and L-Myc proteins heterodimerize, in vitro and in vivo, with the bHLH-Z protein Max5–8. In vitro, Max homodimerizes but preferentially associates with Myc, which homodimerizes poorly5,6. Furthermore Myc-Max heterodimers specifically bind the nucleotide sequence CACGTG9 with higher affinity than either homodimer alone5. The identification of Max and the specific DNA-binding activities of Myc and Max provides an opportunity for directly testing the transcriptional activities of these proteins in mammalian cells. We report here that Myc overexpression activates, whereas Max overexpression represses, transcription of a reporter gene. Max-induced repression is relieved by overexpression of c-Myc. Repression requires the DNA-binding domain of Max, whereas relief of repression requires the dimerization and transcriptional activation activities of Myc. Both effects require Myc–Max-binding sites in the reporter gene.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Kingston, R. E., Baldwin, A. S. & Sharp, P. A. Cell 41, 3–5 (1985).

    Article  CAS  Google Scholar 

  2. Kaddurah-Daouk, R., Greene, J. M., Baldwin, A. S. & Kingston, R. E. Genes Dev. 1, 347–357 (1987).

    Article  CAS  Google Scholar 

  3. Jones, N. Cell 61, 9–11 (1990).

    Article  CAS  Google Scholar 

  4. Kato, G. J., Barrett, J., Villa-Garcia, M. & Dang, C. V. Molec. cell Biol. 10, 5914–5920 (1990).

    Article  CAS  Google Scholar 

  5. Blackwood, E. M. & Eisenman, R. N. Science 251, 1211–1217 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Prendergast, G. C., Lawe, D. & Ziff, E. B. Cell 85, 395–407 (1991).

    Article  Google Scholar 

  7. Blackwood, E. M., Lüscher, B. & Eisenman, R. N. Genes Dev. 6, 71–80 (1992).

    Article  CAS  Google Scholar 

  8. Wenzel, A., Cziepluch, C., Hamann, U., Schümann, J. & Schwab, M. EMBO J. 10, 3703–3712 (1991).

    Article  CAS  Google Scholar 

  9. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Science 250, 1149–1151 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Hann, S. R., Thompson, C. B. & Eisenman, R. N. Nature 314, 366–369 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Gregor, P. D., Sawadogo, M. & Roeder, R. G. Genes Dev. 4, 1730–1740 (1990).

    Article  CAS  Google Scholar 

  12. Beckman, H., Su, L.-K. & Kadesch, T. Genes Dev. 4, 167–179 (1990).

    Article  Google Scholar 

  13. Chiu, R. et al. Cell 54, 541–552 (1988).

    Article  CAS  Google Scholar 

  14. Boyle, W. J. et al. Cell 64, 573–584 (1991).

    Article  CAS  Google Scholar 

  15. Kato, G. J., Lee, W. M. F., Chen, L. & Dang, C. V. Genes Dev. 6, 81–92 (1992).

    Article  CAS  Google Scholar 

  16. Hann, S. R. & Eisenman, R. N. Molec. cell. Biol. 4, 2486–2497 (1984).

    Article  CAS  Google Scholar 

  17. Waters, C.M., Littlewood, T. D., Hancock, D. C., Moore, J. P. & Evan, G. I. Oncogene 6, 797–805 (1991).

    CAS  PubMed  Google Scholar 

  18. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  19. Dean, M. et al. J. biol. Chem. 261, 9161–9166 (1986).

    CAS  PubMed  Google Scholar 

  20. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Rustgi, A. K., Dyson, N. & Bernards, R. Nature 352, 541–544 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Harland, R. & Weintraub, H. J. cell. Biol. 101, 1094–1099 (1985).

    Article  CAS  Google Scholar 

  23. Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. cell. Biol. 2, 1044–1051 (1982).

    Article  CAS  Google Scholar 

  24. Halazonetis, T. D. & Kandil, A. N. Proc. natn. Acad. Sci. U.S.A. 88, 6162–6166 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Nyborg, J. K. et al. J. biol. Chem. 265, 8237–8242 (1990).

    CAS  PubMed  Google Scholar 

  26. Geballe, A. P. & Mocarski, E. S. J. Virol. 62, 3334–3340 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Berberich, S. J. & Cole, M. D. Genes Dev. 6, 166–176 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1124 Columbia Street, Seattle, Washington, 98104, USA

    Leo Kretzner & Robert N. Eisenman

  2. Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, 98195, USA

    Elizabeth M. Blackwood

Authors

  1. Leo Kretzner

    You can also search for this author inPubMed Google Scholar

  2. Elizabeth M. Blackwood

    You can also search for this author inPubMed Google Scholar

  3. Robert N. Eisenman

    You can also search for this author inPubMed Google Scholar

About this article

Cite this article

Kretzner, L., Blackwood, E. & Eisenman, R. Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426–429 (1992). https://doi.org/10.1038/359426a0

Download citation

  • Received: 23 April 1992

  • Accepted: 14 August 1992

  • Issue Date: 01 October 1992

  • DOI: https://doi.org/10.1038/359426a0

This article is cited by