nature.com

Genetic instability in colorectal cancers - Nature

  • ️Vogelstein, B.
  • ️Thu Apr 10 1997

References

  1. Loeb, L. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  Google Scholar 

  2. Hartwell, L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71, 543–546 (1992).

    Article  CAS  Google Scholar 

  3. Heim, S. & Mitelman, F. Cancer Cytogenetics (Liss, New York, 1987).

    Google Scholar 

  4. Marra, G. & Boland, C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J. Natl Cancer Inst. 87, 1114–1125 (1995).

    Article  CAS  Google Scholar 

  5. Bhattacharyya, N. P., Skandalis, A., Ganesh, A., Groden, J. & Meuth, M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl Acad. Sci. USA 87, 7555–7559 (1990).

    Article  Google Scholar 

  6. Koi, M. et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N’-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLHl mutation. Cancer Res. 54, 4302–4312 (1994).

    Google Scholar 

  7. Casares, S., lonov, Y., Ge, H.-Y., Standbridge, E. & Perucho, M. The microsatellite mutator phenotype of colon cancer cells is often recessive. Oncogene 11, 2303–2310 (1995).

    CAS  Google Scholar 

  8. Lichter, P., Boyle, A. L., Cremer, T. & Ward, D. Analysis of genes and chromosomes by nonisotopic in situ hybridization. Gen. Anal. Tech. Appl. 8, 24–35 (1991).

    CAS  Google Scholar 

  9. Hartwell, L., Weinert, T., Kadyk, L. & Garvik, B. Cell cycle checkpoints, genomic integrity, and cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 259–263 (1994).

    Article  CAS  Google Scholar 

  10. Mayer, V. W. & Aguilera, A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mut. Res. 231, 177–186 (1990).

    Article  CAS  Google Scholar 

  11. Shackney, S. et al. Model for the genetic evolution of human solid tumors. Cancer Res. 49, 3344–3354 (1989).

    CAS  PubMed  Google Scholar 

  12. Tanaka, K. et al. Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature 349, 340–342 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Goyette, M. C. et al. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigeneity is accomplished by correction of any single defect via chromosome transfer. Mol. Cell. Biol. 12, 1387–1395 (1992).

    Article  CAS  Google Scholar 

  14. Rodrigues, N. R. et al. p53 mutations in colorectal cancer. Proc. Natl Acad. Sci. USA 87, 7555–7559 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Shibata, D., Peinado, M. A., lonov, Y., Malkhosyan, S. & Perucho, M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet. 6, 273–281 (1994).

    Article  CAS  Google Scholar 

  16. Huang, J. et al. APC mutations in colorectal tumors with mismatch repair deficiency. Proc. Natl Acad. Sci. USA 93, 9049–9054 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Aaltonen, L. A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Bocker, M. et al. Genomic instability in colorectal carcinomas: comparison of different evaluation methods and their biological significance. J. Path. 179, 15–19 (1996).

    Article  CAS  Google Scholar 

  19. Livingston, L. R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article  Google Scholar 

  20. Yin, Y., Tainsky, M. A., Bischoff, F. Z., Strong, L. C. & Wahl, G. M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70, 937–948 (1992).

    Article  CAS  Google Scholar 

  21. Cottu, P. H. et al. Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines. Oncogene 13, 2727–2730 (1996).

    CAS  PubMed  Google Scholar 

  22. Papadopoulos, N. et al. Mutation of the mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Papadopoulos, N. et al. Mutations of GTBP in genetically unstable cells. Science 268, 1915–1917 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Umar, A. et al. Defective mismatch repair in extracts of colorectal and endometrial cancer lines exhibiting microsatellite instability. J. Biol. Chem. 269, 14367–14370 (1994).

    CAS  PubMed  Google Scholar 

  25. Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ried, T. et al. Specific metaphase and interphase detection of the breakpoint region in 8q24 of Burkitt lymphoma cells by triple-color fluorescence in situ hybridization. Genes Chrom. Cancer 4, 69–74 (1992).

    Article  CAS  Google Scholar 

  27. Lichter, P. & Cremer, T. in Human Cytogenetics: A Practical Approach (eds Rooney, D. E. & Czepulkowski, B. H.) 157–192 (IRL, Oxford, 1992).

    Google Scholar 

  28. Lengauer, C. et al. Large-scale isolation of human Ip36-specific PI clones and their use for fluorescence in situ hybridization. Gen. Anal Tech. Appl. 11, 140–147 (1994).

    CAS  Google Scholar 

  29. Ried, T., Baldini, A., Rand, T. C. & Ward, D. C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. NatlAcad. Sci. USA 89, 1388–1392 (1992).

    Article  ADS  CAS  Google Scholar 

Download references