nature.com

Questioning the evidence for Earth's oldest fossils - Nature

  • ️Grassineau, Nathalie V.
  • ️Thu Mar 07 2002
  • Letter
  • Published: 07 March 2002

Nature volume 416pages 76–81 (2002)Cite this article

Abstract

Structures resembling remarkably preserved bacterial and cyanobacterial microfossils from 3,465-million-year-old Apex cherts of the Warrawoona Group in Western Australia1,2,3,4 currently provide the oldest morphological evidence for life on Earth and have been taken to support an early beginning for oxygen-producing photosynthesis5. Eleven species of filamentous prokaryote, distinguished by shape and geometry, have been put forward as meeting the criteria required of authentic Archaean microfossils1,2,3,4,5, and contrast with other microfossils dismissed as either unreliable or unreproducible1,3,6,7. These structures are nearly a billion years older than putative cyanobacterial biomarkers8, genomic arguments for cyanobacteria9, an oxygenic atmosphere10 and any comparably diverse suite of microfossils5. Here we report new research on the type and re-collected material, involving mapping, optical and electron microscopy, digital image analysis, micro-Raman spectroscopy and other geochemical techniques. We reinterpret the purported microfossil-like structure as secondary artefacts formed from amorphous graphite within multiple generations of metalliferous hydrothermal vein chert and volcanic glass. Although there is no support for primary biological morphology, a Fischer–Tropsch-type synthesis of carbon compounds and carbon isotopic fractionation is inferred for one of the oldest known hydrothermal systems on Earth.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Schopf, J. W. & Packer, B. M. Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 70–73 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Schopf, J. W. in The Proterozoic Biosphere: a Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 25–39 (Cambridge University Press, Cambridge, 1992).

    Book  Google Scholar 

  3. Schopf, J. W. Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260, 640–646 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Schopf, J. W. in Early Life on Earth (ed. Bengtson, S.) 193–206 (Columbia University Press, New York, 1994).

    Google Scholar 

  5. Schopf, J. W. The Cradle of Life (Princeton Univ. Press, New York, 1999).

    Google Scholar 

  6. Buick, R., Dunlop, J. S. R. & Groves, D. I. Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5, 161–181 (1981).

    Article  Google Scholar 

  7. Buick, R. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 M.Y. old chert-barite unit at North Pole, Western Australia. Palaios 5, 441–459 (1990).

    Article  ADS  Google Scholar 

  8. Summons, R. E., Jahnke, L. L., Hope, M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Hedges, S. B. et al. A genomic timescale for the origin of eukaryotes. BioMed Central Evol. Biol. 1, article 4, 1–10 (2001).

    Google Scholar 

  10. Catling, D., Zahnle, K. J. & McKay, C. P. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Van Kranendonk, M. J. Volcanic degassing, hydrothermal circulation and the flourishing of life on Earth: new evidence from the c. 3.45 Ga Warrawoona Group, Pilbara Craton, Western Australia. Precambrian Res. (in press).

  12. Nijman, W., De Bruin, K. & Valkering, M. Growth fault control of early Archaean cherts, barite mounds, and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambr. Res. 88, 25–52 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Strauss, H. & Moore, T. B. in The Proterozoic Biosphere: a Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 711–798 (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  14. de Ronde, C. E. J. & Ebbesen, T. W. 3.2 b.y. of organic compound formation near sea-floor hot springs. Geology 24, 791–794 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Robert, F. Carbon and oxygen isotope variations in Precambrian cherts. Geochim. Cosmochim. Acta 52, 1473–1478 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Shen, Y., Buick, R. & Canfield, D. E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Awramik, S. M. & Semikhatov, M. A. The relationship between morphology, microstructure, and microbiota in three vertically intergrading stromatolites from the Gunflint Iron Formation. Can. J. Earth Sci. 16, 484–495 (1979).

    Article  ADS  Google Scholar 

  18. Mendelson, C. V. & Schopf, J. W. in The Proterozoic Biosphere: a Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 867–951 (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  19. Kudryatsev, A. B., Schopf, J. W., Agresti, D. G. & Wdowiak, T. J. In situ laser-raman imagery of Precambrian microscopic fossils. Proc. N. Am. Acad. Sci. 98, 823–826 (2001).

    Article  ADS  Google Scholar 

  20. Wopenka, B. & Pasteris, J. D. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am. Mineralogist 78, 533–557 (1993).

    CAS  Google Scholar 

  21. Tuinstra, F. & Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Oehler, J. H. Hydrothermal crystallization of silica gel. Bull. Geol. Soc. Am. 87, 1143–1152 (1976).

    Article  CAS  Google Scholar 

  23. Baker, R. T. K & Harris, P. in Chemistry and Physics of Carbon (ed. Walker, P. L. & Thrower, P. A.) 2–165 (Dekker, New York, 1978).

    Google Scholar 

  24. Grotzinger, J. P. & Rothman, D. H. An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Westall, F. et al. Early Archaean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambr. Res. 106, 93–116 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Holm, N. G. & Charlou, J. L. Initial idicators of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 191, 1–8 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Lancet, M. S. & Anders, E. Carbon isotope fractionation in Fischer–Tropsch synthesis and in meteorites. Science 170, 980–982 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Kagi, H. et al. Proper understanding of down-shifted Raman spectra of natural graphite: direct estimation of laser-induced rise in sample temperature. Geochim. Cosmochim. Acta 58, 3527–3530 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Matthews, D. E. & Hayes, J. M. Isotope-ratio-monitoring gas chromatography – mass spectrometry. Anal. Chem. 50, 1465–1473 (1978).

    Article  CAS  Google Scholar 

  30. Clayton, R. N. & Mayeda, T. K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 43–52 (1963).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Stoakes, A. T. Brasier and D. Huston for assistance with field work; N. Charnley, D. Sansom and A. T. Brasier for laboratory support; the Natural History Museum, London, for the loan of the type slides and re-collected material; R. Buick, J. Farmer, J. P. Grotzinger, A. H. Knoll, E. Nisbet, S. Moorbath, J. W. Schopf and R. E. Summons for comments on earlier versions of the manuscript; and The Royal Society, NASA Astrobiology Institute and The Carnegie Institution of Washington for support. This paper is published by permission of the Director of the Geological Survey of Western Australia.

Author information

Authors and Affiliations

  1. Earth Sciences Department, University of Oxford, Parks Road, Oxford, OX1 3PR, UK

    Martin D. Brasier, Owen R. Green, Andrew P. Jephcoat & Annette K. Kleppe

  2. Geological Survey of Western Australia, 100 Plain Street, East Perth, 6004, Western Australia, Australia

    Martin J. Van Kranendonk

  3. Research School of Earth Sciences, Australian National University, Canberra, 0200, ACT, Australia

    John F. Lindsay

  4. School of Earth, Environmental and Physical Sciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK

    Andrew Steele

  5. Department of Geology, Royal Holloway University of London, Egham Hill, TW20 0EX, Surrey, UK

    Nathalie V. Grassineau

Authors

  1. Martin D. Brasier

    You can also search for this author inPubMed Google Scholar

  2. Owen R. Green

    You can also search for this author inPubMed Google Scholar

  3. Andrew P. Jephcoat

    You can also search for this author inPubMed Google Scholar

  4. Annette K. Kleppe

    You can also search for this author inPubMed Google Scholar

  5. Martin J. Van Kranendonk

    You can also search for this author inPubMed Google Scholar

  6. John F. Lindsay

    You can also search for this author inPubMed Google Scholar

  7. Andrew Steele

    You can also search for this author inPubMed Google Scholar

  8. Nathalie V. Grassineau

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Martin D. Brasier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

About this article

Cite this article

Brasier, M., Green, O., Jephcoat, A. et al. Questioning the evidence for Earth's oldest fossils. Nature 416, 76–81 (2002). https://doi.org/10.1038/416076a

Download citation

  • Received: 14 February 2001

  • Accepted: 24 January 2002

  • Issue Date: 07 March 2002

  • DOI: https://doi.org/10.1038/416076a

Associated content