nature.com

The blast in the past - Nature

  • ️Dickens, Gerald R.
  • ️Thu Oct 21 1999
  • News & Views
  • Published: 21 October 1999

Carbon cycle

Nature volume 401pages 752–755 (1999)Cite this article

An Erratum to this article was published on 18 November 1999

On current estimates1,2,3, over a period of less than a thousand years 2,000–4,000 gigatonnes of carbon will be added to the atmosphere by human activity. That's 2–4 billion billion tonnes. What will be the consequence of this rapid and massive release of carbon? The question has been tackled primarily with numerical simulations of the global carbon cycle constrained by experiments, present-day observations and records from the late Quaternary, the past 200,000 years or so of Earth history.

An alternative — studying ancient blasts of carbon — has always seemed pointless simply because we thought that there weren't any such blasts; as many of us know, natural processes cannot suddenly add enormous amounts of carbon to the ocean or atmosphere2. That view of the global carbon cycle is spectacularly flawed, however, as highlighted in the paper by Norris and Röhl on page 775 of this issue4.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

References

  1. Carbon Dioxide Information Analysis Center (CDIAC) http://cdiac.esd.ornl.gov/trends/trends.htm.

  2. Sundquist, E. T. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 371–402 (Springer, New York, 1986).

    Book  Google Scholar 

  3. Walker, J. C. G. & Kasting, J.F. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992).

    Article  CAS  Google Scholar 

  4. Norris, R. D. & Röhl, U. Nature 401, 775–778 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Kennett, J. P. & Stott, L.D. Nature 353, 225–229 (1991).

    Article  ADS  Google Scholar 

  6. Zachos, J. C., Lohmann, K. C., Walker, J. C. G. & Wise, S.W. J. Geol. 101, 191–213 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Thomas, E. & Shackleton, N. J. Correlations of the Early Paleogene in Northwest Europe Geol. Soc. Spec. Publ. 101 (eds Knox, R. O. et al.) 401–411 (Geological Society, London, 1996).

    Google Scholar 

  8. Koch, P. L., Zachos, J. C. & Gingerich, P.D. Nature 358, 319–322 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Bralower, T. J. et al. Geology 25, 963–966 (1997).

    Article  ADS  Google Scholar 

  10. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R.M. Paleoceanography 10, 965–971 (1995).

    Article  ADS  Google Scholar 

  11. Bains, S., Corfield, R. M. & Norris, R.D. Science 285, 724–727 (1999).

    Article  CAS  Google Scholar 

  12. Kvenvolden, K.A. Rev. Geophys. 31, 173–187 (1993).

    Article  ADS  Google Scholar 

  13. Berger, W. H. & Vincent, E. Geol. Rundsch. 75, 249–269 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. the School of Earth Sciences, James Cook University, Townsville, 4811, Queensland, Australia

    Gerald R. Dickens

Authors

  1. Gerald R. Dickens

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Gerald R. Dickens.

About this article

Cite this article

Dickens, G. The blast in the past. Nature 401, 752–755 (1999). https://doi.org/10.1038/44486

Download citation

  • Issue Date: 21 October 1999

  • DOI: https://doi.org/10.1038/44486