nature.com

The language of covalent histone modifications - Nature

  • ️Allis, C. David
  • ️Thu Jan 06 2000
  • Luger,K. & Richmond,T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Kornberg,R. D. & Lorch,Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome. Cell 98, 285–294 (1999).

    CAS  PubMed  Google Scholar 

  • van Holde,K. E. in Chromatin (ed. Rich, A.) 111–148 (Springer, New York, 1988).

    Google Scholar 

  • Wolffe,A. P. & Hayes,J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht,A., Laroche,T., Strahl-Bolsinger,S., Gasser,S. M. & Grunstein,M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Edmondson,D. G., Smith,M. M. & Roth,S. Y. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10, 1247–1259 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Luger,K., Mader,A. W., Richmond,R. K., Sargent,D. F. & Richmond,T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hansen,J. C., Tse,C. & Wolffe,A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37, 17637–17641 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mizzen,C. et al. Signaling to chromatin through histone modifications: how clear is the signal? Cold Spring Harb. Symp. Quant. Biol. 63, 469–481 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Turner,B. M. Decoding the nucleosome. Cell 75, 5–8 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rodas,G. et al. Histone deacetylase. A key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett. 317, 175–180 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Loidl,P. Histone acetylation: facts and questions. Chromosoma 103, 441–449 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Tordera,V., Sendra,R. & Perez-Ortin,J. E. The role of histones and their modifications in the informative content of chromatin. Experientia 49, 780–788 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Grunstein,M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Struhl,K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Thorne,A. W., Kmiciek,D., Mitchelson,K., Sautiere,P. & Crane-Robinson,C. Patterns of histone acetylation. Eur. J. Biochem. 193, 701–713 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Kuo,M. H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269–272 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Grant,P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274, 5895–5900 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Zhang,W., Bone,J. R., Edmondson,D. G., Turner,B. M. & Roth,S. Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 17, 3155–3167 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas,J. R. et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401, 93–98 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tanner,K. G. et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274, 18157–18160 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Trievel,R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA 96, 8931–8936 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements,A. et al. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J. 18, 3521–3532 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin,Y., Fletcher,C. M., Zhou,J., Allis,C. D. & Wagner,G. Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. Nature 400, 86–89 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sternglanz,R. & Schindelin,H. Structure and mechanism of action of the histone acetyltransferase gcn5 and similarity to other N-acetyltransferases. Proc. Natl Acad. Sci. USA 96, 8807–8808 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura,A. & Horikoshi,M. How do histone acetyltransferases select lysine residues in core histones? FEBS Lett. 431, 131–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Turner,B. M. & O'Neill,L. P. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol. 6, 229–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Annunziato,A. T. in The Nucleus (ed. Wolffe, A. P.) 31–56 (JAI, Greenwich, Connecticut, 1995).

    Book  Google Scholar 

  • Allis,C. D., Chicoine,L. G., Richman,R. & Schulman,I. G. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc. Natl Acad. Sci. USA 82, 8048–8052 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel,R. E., Cook,R. G., Perry,C. A., Annunziato,A. T. & Allis,C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler,J. K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402, 555–560 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bradbury,E. M. Reversible histone modifications and the chromosome cell cycle. Bioessays 14, 9–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Koshland,D. & Strunnikov,A. Mitotic chromosome condensation. Annu. Rev. Cell Dev. Biol. 12, 305–333 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan,L. C., Willis,A. C. & Barratt,M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Thomson,S., Mahadevan,L. C. & Clayton,A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell Dev. Biol. 10, 205–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Chadee,D. N. et al. Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J. Biol. Chem. 274, 24914–24920 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi,P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  • De Cesare,D., Jacquot,S., Hanauer,A. & Sassone-Corsi,P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl Acad. Sci. USA 95, 12202–12207 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson,S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin,Y. et al. JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol. Cell 4, 129–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lucchesi,J. C. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr. Opin. Genet. Dev. 8, 179–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Turner,B. M., Birley,A. J. & Lavender,J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375–384 (1992).

    Article  CAS  PubMed  Google Scholar 

  • von Holt,C. et al. Isolation and characterization of histones. Methods Enzymol. 170, 431–523 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Strahl,B. D., Ohba,R., Cook,R. G. & Allis,C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA 96, 14967–14972 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen,D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Nakajima,T. et al. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell 86, 465–474 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Berger,S. L. Gene activation by histone and factor acetyltransferases. Curr. Opin. Cell Biol. 11, 336–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Cosma,M. P., Tanaka,T. & Nasmyth,K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Krebs,J. E., Kuo,M. H., Allis,C. D. & Peterson,C. L. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 13, 1412–1421 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark,D. et al. Chromatin structure of transcriptionally active genes. Cold Spring Harb. Symp. Quant. Biol. 58, 1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Roth,S. Y. & Allis,C. D. Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem. Sci. 17, 93–98 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Barratt,M. J., Hazzalin,C. A., Cano,E. & Mahadevan,L. C. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl Acad. Sci. USA 91, 4781–4785 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendzel,M. J. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Wei,Y., Yu,L., Bowen,J., Gorovsky,M. A. & Allis,C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Goto,H. et al. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274, 25543–25549 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sullivan,K. F., Hechenberger,M. & Masri,K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Hirano,T. SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev. 13, 11–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  • De Rubertis,F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384, 589–591 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Braunstein,M., Sobel,R. E., Allis,C. D., Turner,B. M. & Broach,J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16, 4349–4356 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhalluin,C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Winston,F. & Allis,C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol. 6, 601–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Pawson,T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Roberts,S. M. & Winston,F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147, 451–465 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biggar,S. R. & Crabtree,G. R. Continuous and widespread roles for the Swi–Snf complex in transcription. EMBO J. 18, 2254–2264 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudarsanam,P., Cao,Y., Wu,L., Laurent,B. C. & Winston,F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 18, 3101–3106 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgel,P. T., Tsukiyama,T. & Wu,C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 16, 4717–4726 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luduena,R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol. 178, 207–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Luduena,R. F., Banerjee,A. & Khan,I. A. Tubulin structure and biochemistry. Curr. Opin. Cell Biol. 4, 53–57 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Nogales,E., Whittaker,M., Milligan,R. A. & Downing,K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  PubMed  Google Scholar