Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma - Nature Genetics
- ️Hogg, David
- ️Fri Jan 01 1999
Bergman, W., Gruis, N.A., Sandkuijl, L.A. & Frants, R.R. Genetics of seven Dutch familial atypical multiple mole-melanoma syndrome families: a review of linkage results including chromosomes 1 and 9. J. Invest. Dermatol. 103, 122S–125S (1994).
Goldstein, A.M. et al. Linkage of cutaneous malignant melanoma/dysplastic nevi to chromosome 9p, and evidence for genetic heterogeneity. Am. J. Hum. Genet. 54, 489–496 (1994).
Bale, S.J., Chakravarti, A. & Greene, M.H. Cutaneous malignant melanoma and familial dysplastic nevi: evidence for autosomal dominance and pleiotropy. Am. J. Hum. Genet. 38, 188–196 ( 1986).
Cannon-Albright, L.A. et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science 258, 1148– 1152 (1992).
Cannon-Albright, L.A. et al. Penetrance and expressivity of the chromosome 9p melanoma susceptibility locus (MLM). Cancer Res. 54, 6041–6044 (1994).
Goldstein, A.M., Fraser, M.C., Clark, W.H. Jr & Tucker, M.A. Age at diagnosis and transmission of invasive melanoma in 23 families with cutaneous malignant melanoma/dysplastic nevi. J. Natl Cancer. Inst. 86, 1385–1390 ( 1994).
Goldstein, A.M. & Tucker, M.A. Genetic epidemiology of familial melanoma. Dermatol. Clin. 13, 605–612 (1995).
Hogg, D. et al. Role of the cyclin-dependent kinase inhibitor CDKN2A in familial melanoma. J. Cutan. Med. Surg. 2, 172– 179 (1998).
Hayward, N.K. The current situation with regard to human melanoma and genetic inferences. Curr. Opin. Oncol. 8, 136– 142 (1996).
Kamb, A. Cell-cycle regulators and cancer. Trends Genet. 11, 136–140 (1995).
Sherr, C.J. & Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149– 1163 (1995).
Sherr, C.J. Cancer cell cycles. Science 274, 1672– 1677 (1996).
Hussussian, C.J. et al. Germline p16 mutations in familial melanoma. Nature Genet. 8, 15–21 ( 1994).
Kamb, A. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 8, 23–26 (1994).
Gruis, N.A., Sandkuijl, L.A., van der Velden, P.A., Bergman, W. & Frants, R.R. CDKN2 explains part of the clinical phenotype in Dutch familial atypical multiple-mole melanoma (FAMMM) syndrome families. Melanoma Res. 5, 169– 177 (1995).
Holland, E.A. et al. Analysis of the p16 gene, CDKN2, in 17 Australian melanoma kindreds. Oncogene 11, 2289– 2294 (1995).
Walker, G.J. et al. Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum. Mol. Genet. 4, 1845– 1852 (1995).
Liu, L. et al. Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene 11, 405 –412 (1995).
FitzGerald, M.G. et al. Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc. Natl Acad. Sci. USA 93, 8541– 8545 (1996).
Monzon, J. et al. CDKN2A mutations in multiple primary melanomas. N. Engl. J. Med. 338, 879–887 (1998).
Bergenhem, N.C., Venta, P.J., Hopkins, P.J., Kim, H.J. & Tashian, R.E. Mutation creates an open reading frame within the 5´ untranslated region of macaque erythrocyte carbonic anhydrase (CA) I mRNA that suppresses CA I expression and supports the scanning model for translation. Proc. Natl Acad. Sci. USA 89 , 8798–8802 (1992).
Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 19, 155–157 ( 1998).
Pollock, P.M. et al. Haplotype analysis of two recurrent CDKN2A mutations in 10 melanoma families: evidence for common founders and independent mutations. Hum. Mutat. 11, 424–431 (1998).
MacGeoch, C. et al. Genetic heterogeneity in familial malignant melanoma. Hum. Mol. Genet. 3, 2195–2200 (1994).
Borg, A. et al. Novel germline p16 mutation in familial malignant melanoma in southern Sweden. Cancer Res. 56, 2497– 2500 (1996).