nature.com

Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress - Nature Genetics

  • ️Lee, Kuo-Fen
  • ️Sat Apr 01 2000
  • Vale, W., Spiess, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397 (1981).

    Article  CAS  Google Scholar 

  • Vaughan, J. et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378, 287–292 (1995).

    Article  CAS  Google Scholar 

  • Perrin, M. et al. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc. Natl Acad. Sci. USA 92, 2969–2973 (1995).

    Article  CAS  Google Scholar 

  • Lovenberg, T.W. et al. Cloning and characterization of a functionally distinct corticotropin- releasing factor receptor subtype from rat brain Proc. Natl Acad. Sci. USA 92, 836–840 (1995).

    Article  CAS  Google Scholar 

  • Kishimoto, T., Pearse, R.V. 2nd, Lin, C.R. & Rosenfeld, M.G. A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle. Proc. Natl Acad. Sci. USA 92, 1108–1112 (1995).

    Article  CAS  Google Scholar 

  • Stenzel, P. et al. Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart. Mol. Endocrinol. 9, 637–645 (1995).

    CAS  PubMed  Google Scholar 

  • Smith, G.W. et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102 (1998).

    Article  CAS  Google Scholar 

  • Spina, M. et al. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 273, 1561–1564 (1996).

    Article  CAS  Google Scholar 

  • Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genet. 19, 162–166 (1998).

    Article  CAS  Google Scholar 

  • Hogg, S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21–30 (1996).

    Article  CAS  Google Scholar 

  • Rodgers, R.J. Animal models of ‘anxiety’: where next? Behav. Pharmacol. 8, 477–496 (1997).

    Article  CAS  Google Scholar 

  • Belzung, C. & Le Pape, G. Comparison of different behavioral test situations used in psychopharmacology for measurement of anxiety. Physiol. Behav. 56, 623–628 (1994).

    Article  CAS  Google Scholar 

  • Coste, S.C. et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nature Genet. 24, 403–409 (2000).

    Article  CAS  Google Scholar 

  • Moreau, J.L., Kilpatrick, G. & Jenck, F. Urocortin, a novel neuropeptide with anxiogenic-like properties. Neuroreport 8, 1697–1701 (1997).

    Article  CAS  Google Scholar 

  • Chalmers, D.T., Lovenberg, T.W. & De Souza, E.B. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci. 15, 6340–6350 (1995).

    Article  CAS  Google Scholar 

  • Liang, K.C. et al. Lesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotropin-releasing factor on the acoustic startle reflex. J. Neurosci. 12, 2313–2320 (1992).

    Article  CAS  Google Scholar 

  • King, F.A. & Meyer, P.M. Effects of amygdaloid lesions upon septal hyperemotionality in the rat. Science 128, 655–656 (1958).

    Article  CAS  Google Scholar 

  • Melia, K.R. & Davis, M. Effects of septal lesions on fear-potentiated startle, and on the anxiolytic effects of buspirone and diazepam. Physiol. Behav. 49, 603–611 (1991).

    Article  CAS  Google Scholar 

  • Lee, Y. & Davis, M. Role of the septum in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J. Neurosci. 17, 6424–6433 (1997).

    Article  CAS  Google Scholar 

  • Allen, J.P. & Allen, C.F. Amygdalar participation in tonic Acth secretion in the rat. Neuroendocrinology 19, 115–125 (1975).

    Article  CAS  Google Scholar 

  • Beaulieu, S., Di Paolo, T. & Barden, N. Control of ACTH secretion by the central nucleus of the amygdala: implication of the serotoninergic system and its relevance to the glucocorticoid delayed negative feedback mechanism. Neuroendocrinology 44, 247–254 (1986).

    Article  CAS  Google Scholar 

  • Beaulieu, S., Di Paolo, T., Cote, J. & Barden, N. Participation of the central amygdaloid nucleus in the response of adrenocorticotropin secretion to immobilization stress: opposing roles of the noradrenergic and dopaminergic systems. Neuroendocrinology 45, 37–46 (1987).

    Article  CAS  Google Scholar 

  • Marcilhac, A. & Siaud, P. Regulation of the adrenocorticotrophin response to stress by the central nucleus of the amygdala in rats depends upon the nature of the stressor. Exp. Physiol. 81, 1035–1038 (1996).

    Article  CAS  Google Scholar 

  • Bale, T.L. & Dorsa, D.M. Sex differences in and effects of estrogen on oxytocin receptor messenger ribonucleic acid expression in the ventromedial hypothalamus. Endocrinology 136, 27–32 (1995).

    Article  CAS  Google Scholar