nature.com

Structural proteomics of an archaeon - Nature Structural & Molecular Biology

  • ️Arrowsmith, Cheryl H.
  • ️Sun Oct 01 2000

Accession codes

Accessions

Protein Data Bank

References

  1. Zarembinski, T.I., et al. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc. Natl. Acad. Sci. USA 95, 15189–15193 (1998).

    Article  CAS  Google Scholar 

  2. Montelione, G.T. & Anderson, S. Structural genomics: keystone for a human proteome project. Nature Struct. Biol. 6, 11–12 (1999).

    Article  CAS  Google Scholar 

  3. Gerstein, M. & Hegyi, H. Comparing microbial genomes in terms of protein structure: surveys of a finite parts list. FEMS Microbiol. Rev. 22, 277 (1998).

    Article  CAS  Google Scholar 

  4. Sali, A. 100,000 protein structures for the biologist. Nature Struct. Biol. 5, 1029–1032 (1998).

    Article  CAS  Google Scholar 

  5. Sanchez, R. & Sali, A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 95, 13597–13602 (1998).

    Article  CAS  Google Scholar 

  6. Moult, J., Hubbard, T., Bryant, S.H., Fidelis, K. & Pedersen, J.T. Critical assessment of methods of protein structure prediction (CASP): round II. Proteins Suppl, 2–6 (1997).

  7. Smith, D.R., et al. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179, 7135–7155 ( 1997).

    Article  CAS  Google Scholar 

  8. Alexander, P., Fahnestock, S., Lee, T., Orban, J. & Bryan, P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 31, 3597–3603 (1992).

    Article  CAS  Google Scholar 

  9. Myers, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 ( 1995).

    Article  CAS  Google Scholar 

  10. Quinlan, J.R. Decision trees and decision making. IEEE Transaction on Systems, Man and Cybernetics 20 (1992).

  11. Hendrickson, W.A., Smith, J.L. & Sheriff, S. Direct phase determination based on anomalous scattering . Methods Enzymol. 115, 41– 55 (1985).

    Article  CAS  Google Scholar 

  12. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  13. Gerstein, M. & Levitt, M. Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Sci. 7, 445– 456 (1998).

    Article  CAS  Google Scholar 

  14. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  15. Raffaelli, N., et al. Identification of the archaeal NMN adenylytransferase gene . Mol. Cell. Biochem. 193, 99– 102 (1999).

    Article  CAS  Google Scholar 

  16. Cort, J.R., Yee, A., Edwards, A.M., Arrowsmith, C.H. & Kennedy, M.A. Structure-based functional classification of hypothetical protein MT538 from Methanobacterium thermoautotrophicum. J. Mol. Biol. in the press (2000).

  17. Feher, V.A. & Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289–293 ( 1999).

    Article  CAS  Google Scholar 

  18. O'Hara, B.P., et al. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex. EMBO J. 18, 5175–5186 ( 1999).

    Article  CAS  Google Scholar 

  19. Wu, N., Mo, Y., Gao, J. & Pai, E.F. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc. Natl. Acad. Sci. USA 97, 2017–2022 (2000).

    Article  CAS  Google Scholar 

  20. Mackereth, C.D., Arrowsmith, C.H., Edwards, A.M. & McIntosh, L.P. Zinc-bundle structure of the essential RNA polymerase subunit RPB10 from Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 97, 6316–6321 ( 2000).

    Article  CAS  Google Scholar 

  21. Cramer, P., et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640 –649 (2000).

    Article  CAS  Google Scholar 

  22. Yee, A., et al. Solution structure of the RNA polymerase subunit RPB5 from Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 97, 6311–6315 ( 2000).

    Article  CAS  Google Scholar 

  23. Liu, H., et al. TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem. Biophys. Res. Commun. 254 , 203–210 (1999).

    Article  CAS  Google Scholar 

  24. Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993).

    Article  CAS  Google Scholar 

  25. Kozlov, G., et al. Rapid fold and strcuture determination of the archaeal translation elongation factor 1b from Methanobacterium thermoautotrophicum. J. Biomol. NMR 17, 187–194 (2000).

    Article  CAS  Google Scholar 

  26. Perez, J.M. et al. The solution structure of the guanine nucleotide exchange domain of human elongation factor 1β reveals a striking resemblance to that of EF-Ts from Escherichia coli. Structure Fold. Des. 7, 217–226 ( 1999).

    Article  CAS  Google Scholar 

  27. Sonnhammer, E.L.L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (eds. Glasgow, J., et al.) 175–182 (AAAI Press, Menlo Park, California; 1998).

    Google Scholar 

  28. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990).

    Article  CAS  Google Scholar 

  29. Quinlan, J.R. C4.5: Programs for Machine Learning (Morgan Kaufmann, San Mateo, California; 1992).

    Google Scholar 

Download references

Acknowledgements

We are grateful to J. Reeve for providing M.th. ΔH chromosomal DNA. We thank technicians, A. Engel, S. Beasely, B. Le and summer students F. Hsu, A. Tuite, G. Minoo, S. Fung J. Loo, and H. Javidni for help with protein expression and purification. We thank L. Daniels for a gift of coenzyme F420, and A. Ayed for performing the EMSA of MTH1615. We acknowledge funding support from the Canadian funding organizations, MRC/CIHR (C.H.A, A.M.E, V.B., K.G.), NSERC (C.D.M), PENCE (L.P.M., E.F.P.) and US DOE contracts (M.A.K., J.R.C.), NIH and the Keck Foundation (M.G.), PNNL Laboratory Director's Research and Development funds (M.A.K.) and a Sloan Foundation-DOE fellowship (Y.K.). Part of the NMR work was performed at EMSL (a national scientific users facility sponsored by DOE Biological and Environmental Research) located at PNNL and operated by Battelle. X-ray data were collected at the Advanced Photon Source supported by the U.S. DOE, Basic Energy Sciences, Office of Science, and BioCARS Sector 14 supported by the NIH.

Author information

Author notes

  1. Akil Dharamsi

    Present address: Integrative Proteomics Inc., Toronto, Ontario, Canada

  2. Dinesh Christendat, Adelinda Yee, Alan R. Davidson and Emil F. Pai: These two authors contributed equally to this work.

Authors and Affiliations

  1. Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Ave, Toronto, M5G 2M9, Ontario, Canada

    Dinesh Christendat, Adelinda Yee, Akil Dharamsi, Alexei Savchenko, Valerie Booth, Vivian Saridakis, Ning Wu, Emil F. Pai, Aled M. Edwards & Cheryl H. Arrowsmith

  2. Department of Molecular Biophysics and Biochemistry and Computer Science, PO Box 208114, Yale University, New Haven , 06520, Connecticut, USA

    Yuval Kluger & Mark Gerstein

  3. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratories, EMSL 2569 K8-98, Richland, 99352, Washington, USA

    John R. Cort & Michael A. Kennedy

  4. Departments of Biochemistry and Molecular Biology, Chemistry and the Biotechnology Laboratory, 2146 Health Sciences Mall, University of British Columbia, Vancouver, V6T 1Z3, British Columbia, Canada

    Cameron D. Mackereth & Lawrence P. McIntosh

  5. Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal , H4P 2R2, Quebec, Canada

    Irena Ekiel

  6. Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada

    Guennadi Kozlov & Kalle Gehring

  7. Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, M5S 1A8, Ontario, Canada

    Karen L. Maxwell, Alan R. Davidson & Emil F. Pai

  8. Department of Molecular and Medical Genetics, University of Toronto, 1 Kings College Circle, Toronto, M5S 1A8, Ontario, Canada

    Alan R. Davidson & Emil F. Pai

  9. Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, 112 College St., Toronto, M5G 1L6, Ontario, Canada

    Aled M. Edwards

Authors

  1. Dinesh Christendat

    You can also search for this author in PubMed Google Scholar

  2. Adelinda Yee

    You can also search for this author in PubMed Google Scholar

  3. Akil Dharamsi

    You can also search for this author in PubMed Google Scholar

  4. Yuval Kluger

    You can also search for this author in PubMed Google Scholar

  5. Alexei Savchenko

    You can also search for this author in PubMed Google Scholar

  6. John R. Cort

    You can also search for this author in PubMed Google Scholar

  7. Valerie Booth

    You can also search for this author in PubMed Google Scholar

  8. Cameron D. Mackereth

    You can also search for this author in PubMed Google Scholar

  9. Vivian Saridakis

    You can also search for this author in PubMed Google Scholar

  10. Irena Ekiel

    You can also search for this author in PubMed Google Scholar

  11. Guennadi Kozlov

    You can also search for this author in PubMed Google Scholar

  12. Karen L. Maxwell

    You can also search for this author in PubMed Google Scholar

  13. Ning Wu

    You can also search for this author in PubMed Google Scholar

  14. Lawrence P. McIntosh

    You can also search for this author in PubMed Google Scholar

  15. Kalle Gehring

    You can also search for this author in PubMed Google Scholar

  16. Michael A. Kennedy

    You can also search for this author in PubMed Google Scholar

  17. Alan R. Davidson

    You can also search for this author in PubMed Google Scholar

  18. Emil F. Pai

    You can also search for this author in PubMed Google Scholar

  19. Mark Gerstein

    You can also search for this author in PubMed Google Scholar

  20. Aled M. Edwards

    You can also search for this author in PubMed Google Scholar

  21. Cheryl H. Arrowsmith

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Aled M. Edwards or Cheryl H. Arrowsmith.

About this article

Cite this article

Christendat, D., Yee, A., Dharamsi, A. et al. Structural proteomics of an archaeon. Nat Struct Mol Biol 7, 903–909 (2000). https://doi.org/10.1038/82823

Download citation

  • Received: 20 June 2000

  • Accepted: 02 August 2000

  • Issue Date: October 2000

  • DOI: https://doi.org/10.1038/82823