nature.com

The structure of Sky1p reveals a novel mechanism for constitutive activity - Nature Structural & Molecular Biology

  • ️Ghosh, Gourisankar
  • ️Thu Feb 01 2001
  • Cao, W. & Garcia-Blanco, M.A. A serine/arginine-rich domain in the human U1 70k protein is necessary and sufficient for ASF/SF2 binding. J. Biol. Chem. 273, 20629–20635 (1998).

    Article  CAS  Google Scholar 

  • Xiao, S.H. & Manley, J.L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  Google Scholar 

  • Gui, J.-F., Tronchere, H., Chandler, S.D. & Fu, X.-D. Purification and characterization of a kinase specific for the serine- and arginine-rich pre-mRNA splicing factors. Proc. Natl. Acad. Sci. USA 91, 10824–10828. (1994).

    Article  CAS  Google Scholar 

  • Siebel, C.W., Feng, L., Guthrie, C. & Fu, X.D. Conservation in budding yeast of a kinase specific for SR splicing factors. Proc. Natl. Acad. Sci. USA 96, 5440–5445 (1999).

    Article  CAS  Google Scholar 

  • Kadowaki, T. et al. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126, 649–659 (1994).

    Article  CAS  Google Scholar 

  • Lee, M.S., Henry, M. & Silver, P.A. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes Dev. 10, 1233–1246 (1996).

    Article  CAS  Google Scholar 

  • Yun, C.Y. & Fu, X.-D. Conserved SR protein kinase is involved in regulated nuclear import and its action is counteracted by arginine methylation in S. cerevisiae. J. Cell Biol. 150, 707–717 (2000).

    Article  CAS  Google Scholar 

  • Colwill, K. et al. SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J. Biol. Chem. 271, 24569–24575 (1996).

    Article  CAS  Google Scholar 

  • Wang, H.Y. et al. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140, 737–750 (1998).

    Article  CAS  Google Scholar 

  • Taylor, S.S. & Radzio-Andzelm, E. Three protein kinase structures define a common motif. Structure 2, 345–355 (1994).

    Article  CAS  Google Scholar 

  • Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 (1997).

    Article  CAS  Google Scholar 

  • Xie, X. et al. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6, 983–991 (1998).

    Article  CAS  Google Scholar 

  • Bellon, S., Fitzgibbon, M.J., Fox, T., Hsiao, H.-M. & Wilson, K.P. The structure of phosphorylated P38gamma is monomeric and reveals a conserved activation-loop conformation. Structure 7, 1057–1065 (1999).

    Article  CAS  Google Scholar 

  • Zheng, J. et al. 2.2 Å refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr. D 49, 362–365 (1993).

    Article  CAS  Google Scholar 

  • Jeffrey, P.D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320 (1995).

    Article  CAS  Google Scholar 

  • Radzio-Andzelm, E., Lew, J. & Taylor, S. Bound to activate: conformational consequences of cyclin binding to CDK2. Structure 3, 1135–1141 (1995).

    Article  CAS  Google Scholar 

  • Taylor, S.S. et al. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Pharmacol. Ther. 82, 133–141 (1999).

    Article  CAS  Google Scholar 

  • Johnson, L.N., Noble, M.E.M. & Owen, D.J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

    Article  CAS  Google Scholar 

  • Johnson, L.N., Lowe, E.D., Noble, M.E.M. & Owen, D.J. The structural basis for substrate recognition and control by protein kinases. FEBS Lett. 430, 1–11 (1998).

    Article  CAS  Google Scholar 

  • Niefind, K., Guerra, B., Pinna, L.A., Issinger, O.-G. & Schomburg, D. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 angstrom resolution. EMBO J. 17, 2451–2462 (1998).

    Article  CAS  Google Scholar 

  • Brown, N.R., Nobel, E.M., Endicott, J.A. & Johnson, L.N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biol. 1, 438–443 (1999).

    Article  CAS  Google Scholar 

  • De Bondt, H.L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).

    Article  CAS  Google Scholar 

  • Wilson, K.P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  Google Scholar 

  • Wang, Z. et al. The structure of mitogen-activated protein kinase p38 at 2.1-Å resolution. Proc. Natl. Acad. Sci. USA 94, 2327–2332 (1997).

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, F., Ebert, D., Cobb, M.H. & Goldsmith, E.J. Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 3, 299–307 (1995).

    Article  CAS  Google Scholar 

  • Roach, P.J. Multisite and hierarchical protein phosphorylation. J. Biol. Chem. 266, 14139–14142 (1991).

    CAS  PubMed  Google Scholar 

  • Stojdl, D.F. & Bell, J.C. SR protein kinases: the splice of life. Biochem. Cell Biol. 77, 293–298 (1999).

    Article  CAS  Google Scholar 

  • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  • Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  • LaFortelle, E.d. & Bricogne, G. Maximun-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  • Jones, T.A. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  • Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thorton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  • Phelps, C.B., Sengchanthalangsy, L.L., Huxford, T. & Ghosh, G. Mechanism of IκBα binding to NFκB dimers. J. Biol. Chem. 275, 29840–29846 (2000).

    Article  CAS  Google Scholar 

  • Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  • Hubbard, S.R., Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    Article  CAS  Google Scholar 

  • Meritt, E.A. & Murphy, M.E.P. Raster3d version 2.0 — a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  • Madura, J.D. et al. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 91, 57–95 (1995).

    Article  CAS  Google Scholar 

  • Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association — insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar