nature.com

Creation of genome-wide protein expression libraries using random activation of gene expression - Nature Biotechnology

  • ️Ducar, Matt
  • ️Tue May 01 2001
  • Adams, M.D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  Google Scholar 

  • Hillier, L.D. et al. Generation and analysis of 380,000 human expressed sequence tags. Genome Res. 6, 807–828 (1996).

    Article  CAS  Google Scholar 

  • Tanaka, T. et al. Construction of a normalized directionally cloned cDNA library from adult heart and analysis of 3040 clones by partial sequencing. Genomics 35, 231–235 (1996).

    Article  CAS  Google Scholar 

  • Nomura, N. et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes KIAA0001–KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res. 1, 27–35 (1994).

    Article  CAS  Google Scholar 

  • Diatchenko, L., Lukyanov, S., Lau, Y.F. & Siebert, P.D. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol. 303, 349–380 (1999).

    Article  CAS  Google Scholar 

  • Wan, J.S. & Erlander, M.G. Cloning differentially expressed genes by using differential display and subtractive hybridization. Methods Mol. Biol. 85, 45–68 (1997).

    CAS  PubMed  Google Scholar 

  • Orr, S.L. et al. Isolation of unknown genes from human bone marrow by differential screening and single-pass cDNA sequence determination. Proc. Natl. Acad. Sci. USA 91, 11869–11873 (1994).

    Article  CAS  Google Scholar 

  • Zhang, H., Zhang, R. & Liang, P. Differential screening of gene expression difference enriched by differential display. Nucleic Acids Res. 24, 2454–2455 (1996).

    Article  CAS  Google Scholar 

  • Blumberg, B. & Belmonte, J.C. Subtractive hybridization and construction of cDNA libraries. Methods Mol. Biol. 97, 555–574 (1999).

    CAS  PubMed  Google Scholar 

  • Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  CAS  Google Scholar 

  • Adams, M.D. et al. The genome sequence for Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  • Mewes H.W. et al. Overview of the yeast genome. Nature 287, 7–65 (1997).

    Article  Google Scholar 

  • The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  • Lander, E.S. et al. Initial sequencing and analysis of the human genome. International Human Genome Sequencing Consortium. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  • Venter, J. Craig et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  • Abdelilah-Seyfried, S. et al. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics 155, 733–752 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    CAS  PubMed  Google Scholar 

  • Hay, B.A., Maile, R. & Rubin, G.M. P element insertion-dependent gene activation in the Drosophila eye. Proc. Natl. Acad. Sci. USA 94, 5195–5200 (1997).

    Article  CAS  Google Scholar 

  • Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  Google Scholar 

  • Neilan, E.G. & Barsh, G.S. Gene trap insertional mutagenesis in mice: new vectors and germ line mutations in two novel genes. Transgenic Res. 8, 451–458 (1999).

    Article  CAS  Google Scholar 

  • Hardouin, N. & Nagy, A. Gene-trap-based target site for cre-mediated transgenic insertion. Genesis 26, 245–252 (2000).

    Article  CAS  Google Scholar 

  • Zambrowicz, B.P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  Google Scholar 

  • Wiles, M.V. et al. Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nat. Genet. 24, 13–14 (2000).

    Article  CAS  Google Scholar 

  • Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  • Niwa, H. et al. An efficient gene-trap method using poly A trap vectors and characterization of gene-trap events. J. Biochem. (Tokyo) 113, 343–349 (1993).

    Article  CAS  Google Scholar 

  • Wurst, W. et al. A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139, 889–899 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaldo, P., Chowdhury, K., Stoykova, A., Torres, M. & Gruss, P. Efficient gene trap screening for novel developmental genes using IRES beta geo vector and in vitro preselection. Exp. Cell Res. 244, 125–136 (1998).

    Article  CAS  Google Scholar 

  • Skarnes, W.C., Auerbach, B.A. & Joyner, A.L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992).

    Article  CAS  Google Scholar 

  • Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  • Xu, Y. & Uberbacher, E.C. Automated gene identification in large-scale genomic sequences. J. Comput. Biol. 4, 325–338 (1997).

    Article  CAS  Google Scholar 

  • Xu, Y., Mural, R.J. & Uberbacher, E.C. Inferring gene structures in genomic sequences using pattern recognition and expressed sequence tags. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 344–353 (1997).

    CAS  PubMed  Google Scholar 

  • Mural, R.J., Parang, M., Shah, M., Snoddy, J. & Uberbacher, E.C. The Genome Channel: a browser to a uniform first-pass annotation of genomic DNA. Trends Genet. 15, 38–39 (1999).

    Article  CAS  Google Scholar 

  • Kaufman, R.J. Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol. 185, 547–548 (1990).

    Google Scholar 

  • Niall, H.D., Hogan, M.L., Sauer, R., Rosenblum, I.Y. & Greenwood, F.C. Sequence of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication. Proc. Natl. Acad. Sci. USA 68, 866–869 (1971).

    Article  CAS  Google Scholar 

  • Ealey, P.A. et al. The development of an eluted stain bioassay (ESTA) for human growth hormone. Growth Reg. 5, 36–44 (1995).

    CAS  Google Scholar 

  • Ewing, B., Hillier, L., Michael C. Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using phred: I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    Article  CAS  Google Scholar 

  • Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred: II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  Google Scholar 

  • Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  • Wu, T.D., Nevill-Manning, C.G. & Brutlag, D.L. Minimal-risk scoring matrices for sequence analysis. J. Comput. Biol. 6, 219–235 (1999).

    Article  CAS  Google Scholar 

  • Wu T.D., Nevill-Manning, C.G. & Brutlag, D.L. Fast probabilistic analysis of sequence function using scoring matrices. Bioinformatics 16, 233–244 (2000).

    Article  CAS  Google Scholar 

  • Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  Google Scholar 

  • von Heijne, G. Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494 (1992).

    Article  CAS  Google Scholar