nature.com

Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1 - Nature Medicine

  • ️Buchwald, Manuel
  • ️Sun Jul 01 2001
  • Garcia-Higuera, I., Kuang, Y. & D'Andrea, A.D. The molecular and cellular biology of Fanconi anemia. Curr. Opin. Hematol. 6, 83–88 (1999).

    Article  CAS  Google Scholar 

  • Joenje, H. & Gille, J.J.P. Oxygen metabolism and chromosomal breakage in Fanconi anemia. in Fanconi Anemia: Clinical, Cytogenetic, and Experimental Aspects (eds. Auerbach, A.D., Schroeder-Kurth, T.M. & Obe, G.) 174–182 (Springer, Berlin, 1989).

    Chapter  Google Scholar 

  • Joenje, H. et al. Complementation analysis in Fanconi anemia: assignment of the reference FA-H patient to group A. Am. J. Hum. Genet. 67, 759–762 (2000).

    Article  CAS  Google Scholar 

  • de Winter, J.P. et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet. 9, 2665–2674 (2000).

    Article  CAS  Google Scholar 

  • Medhurst, A.L., Huber, P.A., Waisfisz, Q., de Winter, J.J. & Mathew, C.G. Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum. Mol. Genet. 10, 423–429 (2001).

    Article  CAS  Google Scholar 

  • Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell. 7, 249–262 (2001).

    Article  CAS  Google Scholar 

  • Youssoufian, H. Localization of Fanconi anemia C protein to the cytoplasm of mammalian cells. Proc. Natl. Acad. Sci. USA 91, 7975–7979 (1994).

    Article  CAS  Google Scholar 

  • Youssoufian, H. Cytoplasmic localization of FAC is essential for the correction of a prerepair defect in Fanconi anemia group C cells. J. Clin. Invest. 97, 2003–2010 (1996).

    Article  CAS  Google Scholar 

  • Kruyt, F.A. et al. Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood 92, 3050–3056 (1998).

    CAS  PubMed  Google Scholar 

  • Hoshino, T. et al. Molecular chaperone GRP94 binds to the Fanconi anemia group C protein and regulates its intracellular expression. Blood 91, 4379–4386 (1998).

    CAS  PubMed  Google Scholar 

  • Hoatlin, M.E. et al. A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood 94, 3737–3747 (1999).

    CAS  PubMed  Google Scholar 

  • Cumming, R.C., Liu, J.M., Youssoufian, H. & Buchwald, M. Suppression of apoptosis in hematopoietic factor-dependent progenitor cell lines by expression of the FAC gene. Blood 88, 4558–4567 (1996).

    CAS  PubMed  Google Scholar 

  • Wang, J. et al. Overexpression of the fanconi anemia group C gene (FAC) protects hematopoietic progenitors from death induced by Fas-mediated apoptosis. Cancer Res. 58, 3538–3541 (1998).

    CAS  PubMed  Google Scholar 

  • Rathbun, R.K. et al. Inactivation of the Fanconi anemia group C gene augments interferon- gamma-induced apoptotic responses in hematopoietic cells. Blood 90, 974–985 (1997).

    CAS  PubMed  Google Scholar 

  • Haneline, L.S. et al. Multiple inhibitory cytokines induce deregulated progenitor growth and apoptosis in hematopoietic cells from Fac−/− mice. Blood 91, 4092–4098 (1998).

    CAS  PubMed  Google Scholar 

  • Otsuki, T. et al. Tumor necrosis factor-α and CD95 ligation suppress erythropoiesis in Fanconi anemia C gene knockout mice. J. Cell. Physiol. 179, 79–86 (1999).

    Article  CAS  Google Scholar 

  • Kodym, R., Calkins, P. & Story, M. The cloning and characterization of a new stress response protein. A mammalian member of a family of theta class glutathione S-transferase-like proteins. J. Biol. Chem. 274, 5131–5137 (1999).

    Article  CAS  Google Scholar 

  • Voehringer, D.W. et al. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl. Acad. Sci. USA 97, 2680–2685 (2000).

    Article  CAS  Google Scholar 

  • Kampranis, S.C. et al. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275, 29207–29216 (2000).

    Article  CAS  Google Scholar 

  • Hayes, J.D. & Pulford, D.J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445–600 (1995).

    Article  CAS  Google Scholar 

  • Hayes, J.D. & McLellan, L.I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31, 273–300 (1999).

    Article  CAS  Google Scholar 

  • Meister, A. Selective modification of glutathione metabolism. Science 220, 472–477 (1983).

    Article  CAS  Google Scholar 

  • van den Dobbelsteen, D.J. et al. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J. Biol. Chem. 271, 15420–15427 (1996).

    Article  CAS  Google Scholar 

  • Bojes, H.K. et al. Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal. Biochem. J. 325, 315–319 (1997).

    Article  CAS  Google Scholar 

  • Bojes, H.K., Feng, X., Kehrer, J.P. & Cohen, G.M. Apoptosis in hematopoietic cells (FL5.12) caused by interleukin-3 withdrawal: relationship to caspase activity and the loss of glutathione. Cell. Death Differ. 6, 61–70 (1999).

    Article  CAS  Google Scholar 

  • Shen, H. et al. Modulation of class π glutathione transferase activity by sulfhydryl group modification. Arch. Biochem. Biophys. 286, 178–182 (1991).

    Article  CAS  Google Scholar 

  • Shen, H., Tsuchida, S., Tamai, K. & Sato, K. Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P-form by hydrogen peroxide. Arch. Biochem. Biophys. 300, 137–141 (1993).

    Article  CAS  Google Scholar 

  • Terada, T. et al. Modulation of glutathione S-transferase activity by a thiol/disulfide exchange reaction and involvement of thioltransferase. Arch. Biochem. Biophys. 300, 495–500 (1993).

    Article  CAS  Google Scholar 

  • Berhane, K., Widersten, M., Engstrom, A., Kozarich, J.W. & Mannervik, B. Detoxication of base propenals and other α, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc. Natl. Acad. Sci. USA 91, 1480–1484 (1994).

    Article  CAS  Google Scholar 

  • Shea, T.C., Kelley, S.L. & Henner, W.D. Identification of an anionic form of glutathione transferase present in many human tumors and human tumor cell lines. Cancer Res. 48, 527–533 (1988).

    CAS  PubMed  Google Scholar 

  • Sato, K. Glutathione transferases as markers of preneoplasia and neoplasia. Adv. Cancer Res. 52, 205–255 (1989).

    Article  CAS  Google Scholar 

  • Cuozzo, J.W. & Kaiser, C.A. Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biol. 1, 130–135 (1999).

    Article  CAS  Google Scholar 

  • Frand, A.R., Cuozzo, J.W. & Kaiser, C.A. Pathways for protein disulphide bond formation. Trends Cell Biol. 10, 203–210 (2000).

    Article  CAS  Google Scholar 

  • Wong, J.C.Y., Alon, N. & Buchwald, M. Cloning of the bovine and rat Fanconi anemia group C cDNA. Mamm. Genome 8, 522–525 (1997).

    Article  CAS  Google Scholar 

  • Lay, A.J. et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408, 869–873 (2000).

    Article  CAS  Google Scholar 

  • Joenje, H., Arwert, F., Eriksson, A.W., de Koning, H. & Oostra, A.B. Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature 290, 142–143 (1981).

    Article  CAS  Google Scholar 

  • Ruppitsch, W., Meisslitzer, C., Hirsch-Kauffmann, M. & Schweiger, M. Overexpression of thioredoxin in Fanconi anemia fibroblasts prevents the cytotoxic and DNA damaging effect of mitomycin C and diepoxybutane. FEBS Lett. 422, 99–102 (1998).

    Article  CAS  Google Scholar 

  • Herzenberg, L.A. et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA 94, 1967–1972 (1997).

    Article  CAS  Google Scholar 

  • Adler, V., Yin, Z., Tew, K.D. & Ronai, Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18, 6104–6111 (1999).

    Article  CAS  Google Scholar 

  • Wilhelm, D., Bender, K., Knebel, A. & Angel, P. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol. Cell Biol. 17, 4792–4800 (1997).

    Article  CAS  Google Scholar 

  • Adler, V. et al. Regulation of JNK signaling by GSTp. EMBO J. 18, 1321–1334 (1999).

    Article  CAS  Google Scholar 

  • Yin, Z., Ivanov, V.N., Habelhah, H., Tew, K. & Ronai, Z. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 60, 4053–4057 (2000).

    CAS  PubMed  Google Scholar 

  • Rothe, M., Pan, M.G., Henzel, W.J., Ayres, T.M. & Goeddel, D.V. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    Article  CAS  Google Scholar 

  • Habig, W.H., Pabst, M.J. & Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).

    CAS  PubMed  Google Scholar 

  • Reed, D.J. et al. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem 106, 55–62 (1980).

    Article  CAS  Google Scholar