No evidence for Hadean continental crust within Earth’s oldest evolved rock unit - Nature Geoscience
- ️Pearson, D. G.
- ️Mon Sep 19 2016
References
Kamber, B. S., Collerson, K. D., Moorbath, S. & Whitehouse, M. J. Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral Petrol. 145, 25–46 (2003).
Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).
Kemp, A. I. S., Hickman, A. H., Kirkland, C. L. & Vervoort, J. D. Hf isotopes in detrital and inherited zircons of the Pilbara craton provide no evidence for Hadean continents. Precambr. Res. 261, 112–126 (2015).
Nebel, O., Rapp, R. P. & Yaxley, G. M. The role of detrital zircons in Hadean crustal research. Lithos 190–191, 313–327 (2013).
Harrison, T. M. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009).
Harrison, T. M. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950 (2005).
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).
Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).
Caro, G., Bourdon, B., Birck, J. L. & Moorbath, S. 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003).
O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).
Rizo, H. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–99 (2012).
Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet. Sci. Lett. 491, 96–99 (2011).
Roth, A. S. G. et al. Combined 147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem. Geophys. Geosyst. 15, 2329–2345 (2014).
Froude, D. O. et al. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304, 616–618 (1983).
Bowring, S. A. & Housh, T. The Earth’s early evolution. Science 269, 1535–1540 (1995).
Kamber, B. S., Whitehouse, M. J., Bolhar, R. & Moorbath, S. Volcanic resurfacing and the early terrestrial crust: zircon U–Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet. Sci. Lett. 240, 276–290 (2005).
O’Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambr. Res. 220–221, 23–44 (2012).
Roth, A. S. G. et al. Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet. Sci. Lett. 361, 50–57 (2013).
Moyen, J.-F. & Martin, H. Forty years of TTG research. Lithos 148, 312–336 (2012).
Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nature Geosci. 7, 529–533 (2014).
Grove, T. L. & Kinzler, R. J. Petrogenesis of andesites. Annu. Rev. Earth Planet. Sci. 14, 417–454 (1986).
Rapp, R. P. et al. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambr. Res. 51, 1–25 (1991).
Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral Petrol. 133, 1–11 (1998).
Amelin, Y., Lee, D. C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255 (1999).
Iizuka, T. et al. Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: evidence from in-situ Lu–Hf isotope analysis of zircon. Chem. Geol. 259, 230–239 (2009).
Guitreau, M. et al. Lu–Hf isotope systematics of the Hadean–Eoarchean Acasta Gneiss Complex (Northwest Territories, Canada). Geochim. Cosmochim. Acta 135, 251–269 (2014).
Iizuka, T. et al. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidence for early continental crust. Geology 34, 245–248 (2006).
Taylor, D. J., McKeegan, K. D. & Harrison, T. M. Lu–Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett. 279, 157–164 (2009).
Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambr. Res. 258, 48–82 (2015).
Debaille, V., O’Neill, C., Brandon, A. D. & Haenecour, P. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).
Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambr. Res. 281, 453–472 (2016).
Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).
Ghiorso, M. S. & Gualda, G. A. R. An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib. Mineral Petrol. 169, 53–30 (2015).
Wood, D. A. Major and trace element variations in the tertiary lavas of Eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J. Petrol. 19, 393–436 (1978).
Jónasson, K. Magmatic evolution of the Heiðarsporður ridge, NE-Iceland. J. Volcanol. Geotherm. Res. 147, 109–124 (2005).
Mancini, A., Mattsson, H. B. & Bachmann, O. Origin of the compositional diversity in the basalt-to-dacite series erupted along the Heiðarsporður ridge, NE Iceland. J. Volcanol. Geotherm. Res. 301, 116–127 (2015).
Rollinson, H. R. Using Geochemical Data (Pearson Education Limited, 1993).
Taylor, H. P. & Sheppard, S. M. F. Igneous rocks I: processes of isotopic fractionation and isotope systematics. Rev. Mineral. Geochem. 16, 227–271 (1986).
Muehlenbachs, K., Anderson, A. T. & Sigvaldason, G. E. Low-O18 basalts from Iceland. Geochim. Cosmochim. Acta 38, 577–588 (1974).
Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).
Carley, T. L. et al. Iceland is not a magmatic analog for the Hadean: evidence from the zircon record. Earth Planet. Sci. Lett. 405, 85–97 (2014).
O’Neil, J., Boyet, M., Carlson, R. W. & Paquette, J.-L. Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust. Earth Planet. Sci. Lett. 379, 13–25 (2013).
Reiners, P. W., Nelson, B. K. & Ghiorso, M. S. Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23, 563–566 (1995).
Wasserburg, G. J., Jacousen, S. B., DePaolo, D. J., McCulloch, M. T. & Wen, T. Precise determination of ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311–2323 (1981).
Creaser, R. A., Erdmer, P., Stevens, R. A. & Grant, S. L. Tectonic affinity of Nisutlin and Anvil assemblage strata from the Teslin tectonic zone, northern Canadian Cordillera: constraints from neodymium isotope and geochemical evidence. Tectonics 16, 107–121 (1997).
Unterschutz, J. L., Creaser, R. A., Erdmer, P., Thompson, R. I. & Daughtry, K. L. North American margin origin of Quesnel terrane strata in the southern Canadian Cordillera: inferences from geochemical and Nd isotopic characteristics of Triassic metasedimentary rocks. Geol. Soc. Am. Bull. 114, 462–475 (2002).
Schmidberger, S. S., Simonetti, A., Heaman, L. M., Creaser, R. A. & Whiteford, S. Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet. Sci. Lett. 254, 55–68 (2007).
Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).
Fisher, C. M., Vervoort, J. D. & DuFrane, S. A. Accurate Hf isotope determinations of complex zircons using the ‘laser ablation split stream’ method. Geochem. Geophys. Geosyst. 15, 121–139 (2014).
Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).
Fisher, C. M. et al. Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis. Chem. Geol. 286, 32–47 (2011).
Ickert, R. B. Algorithms for estimating uncertainties in initial radiogenic isotope ratios and model ages. Chem. Geol. 340, 1–43 (2013).
Hoskin, P. W. O. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27–62 (2003).
Lenting, C. et al. The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration. Am. Mineral. 95, 1343–1348 (2010).
Amelin, Y., Kamo, S. L. & Lee, D.-C. Evolution of early crust in chondritic or non-chondritic Earth inferred from U–Pb and Lu–Hf data for chemically abraded zircon from the Itsaq Gneiss Complex, West Greenland. Can. J. Earth Sci. 48, 141–160 (2011).
Mattinson, J. M. Zircon U–Pb chemical abrasion (‘CA-TIMS’) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).
Wotzlaw, J. F. et al. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41, 867–870 (2013).
Davies, J. H. F. L., Wotzlaw, J.-F., Wolfe, A. P., Heaman, L. M. & Arbour, V. Assessing the age of the Late Cretaceous Danek Bonebed with U–Pb geochronology. Can. J. Earth Sci. 51, 982–986 (2014).
Krogh, T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494 (1973).
Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).
Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).
Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U–Pb_Redux. Geochem. Geophys. Geosyst. 12, Q0AA19 (2011).
McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 12, Q0AA18 (2011).
D’Abzac, F.-X., Davies, J. H. F. L., Wotzlaw, J.-F. & Schaltegger, U. Hf isotope analysis of small zircon and baddeleyite grains by conventional multi collector-inductively coupled plasma-mass spectrometry. Chem. Geol. 433, 12–23 (2016).
Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H. & Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 234, 105–126 (2006).
Albarede, F. et al. Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim. Cosmochim. Acta 68, 2725–2744 (2004).
Blichert-Toft, J. & Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258 (1997).
Yuan, H. et al. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol. 247, 100–118 (2008).
Thirlwall, M. F. & Anczkiewicz, R. Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass Spectrom. 235, 59–81 (2004).