nature.com

Mass spectrometry-based proteomics - Nature

  • ️Mann, Matthias
  • ️Thu Mar 13 2003
  • Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for the mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    ADS  CAS  PubMed  Google Scholar 

  • Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular mass exceeding 10000 daltons. Anal. Chem. 60, 2299–2301 (1988).

    CAS  PubMed  Google Scholar 

  • Aebersold, R. & Goodlett, D. R. Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001).

    CAS  PubMed  Google Scholar 

  • Mann, M., Hendrickson, R. C. & Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001).

    CAS  PubMed  Google Scholar 

  • Hager, J. W. A new linear ion trap mass spectrometer. Rapid Commun. Mass. Spectrom. 16, 512–526 (2002).

    ADS  CAS  Google Scholar 

  • Schwartz, J. C., Senko, M. W. & Syka, J. E. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13, 659–669 (2002).

    CAS  PubMed  Google Scholar 

  • Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • Valaskovic, G. A., Kelleher, N. L. & McLafferty, F. W. Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science 273, 1199–2202 (1996).

    ADS  CAS  PubMed  Google Scholar 

  • Martin, S. E., Shabanowitz, J., Hunt, D. F. & Marto, J. A. Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 72, 4266–4274 (2000).

    CAS  PubMed  Google Scholar 

  • Lipton, M. S. et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA 99, 11049–11054 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Krutchinsky, A. N., Kalkum, M. & Chait, B. T. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal. Chem. 73, 5066–5077 (2001).

    CAS  PubMed  Google Scholar 

  • Medzihradszky, K. F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552–558 (2000).

    CAS  PubMed  Google Scholar 

  • Loboda, A. V., Krutchinsky, A. N., Bromirski, M., Ens, W. & Standing, K. G. A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom. 14, 1047–1057 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • Mann, M. & Wilm, M. S. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994).

    CAS  PubMed  Google Scholar 

  • Eng, J. K., McCormack, A. L. & Yates, J. R. I An approach to correlate MS/MS data to amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    CAS  PubMed  Google Scholar 

  • Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Anderson, N. L., Hofmann, J. P., Gemmell, A. & Taylor, J. Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin. Chem. 30, 2031–2036 (1984).

    CAS  PubMed  Google Scholar 

  • Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl Acad. Sci. USA 97, 9390–9395 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10 (2002).

    CAS  PubMed  Google Scholar 

  • Unlu, M., Morgan, M. E. & Minden, J. S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077 (1997).

    CAS  PubMed  Google Scholar 

  • Gauss, C., Kalkum, M., Lowe, M., Lehrach, H. & Klose, J. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20, 575–600 (1999).

    CAS  PubMed  Google Scholar 

  • Hunt, D. F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992).

    ADS  CAS  PubMed  Google Scholar 

  • Wolters, D. A., Washburn, M. P. & Yates, J. R. III An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).

    CAS  PubMed  Google Scholar 

  • Link, A. J. et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol. 17, 676–682 (1999).

    CAS  Google Scholar 

  • Han, D. K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nature Biotechnol. 19, 946–951 (2001).

    CAS  Google Scholar 

  • Gygi, S. P., Rist, B., Griffin, T. J., Eng, J. & Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 1, 47–54 (2002).

    CAS  PubMed  Google Scholar 

  • Washburn, M. P., Wolters, D. & Yates, J. R. III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001).

    CAS  Google Scholar 

  • Conrads, T. P., Issaq, H. J. & Veenstra, T. D. New tools for quantitative phosphoproteome analysis. Biochem. Biophys. Res. Commun. 290, 885–890 (2002).

    CAS  PubMed  Google Scholar 

  • Mirgorodskaya, O. A. et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun. Mass Spectrom. 14, 1226–1232 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • Yao, X., Freas, A., Ramirez, J., Demirev, P. A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001).

    CAS  PubMed  Google Scholar 

  • Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).

    CAS  Google Scholar 

  • Zhou, H., Ranish, J. A., Watts, J. D. & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nature Biotechnol. 20, 512–515 (2002).

    CAS  Google Scholar 

  • Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000).

    CAS  PubMed  Google Scholar 

  • Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    CAS  PubMed  Google Scholar 

  • Zhou, H., Watts, J. D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nature Biotechnol. 19, 375–378 (2001).

    CAS  Google Scholar 

  • Oda, Y., Nagasu, T. & Chait, B. T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnol. 19, 379–382 (2001).

    CAS  Google Scholar 

  • Zhang, H., Li, X.-J., Martin, D. & Aebersold, R. Quantitative analysis of glycoproteins: applications to serum and membrane proteins. (submitted).

  • Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    CAS  PubMed  Google Scholar 

  • Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    CAS  PubMed  Google Scholar 

  • Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. & Gygi, S. P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. DOI: 10.1021/pr025556v (2002).

  • Oshiro, G. et al. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res. 12, 1210–1220 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuster, B., Mortensen, P., Andersen, J. S. & Mann, M. Mass spectrometry allows direct identification of proteins in large genomes. Proteomics 1, 641–650 (2001).

    CAS  PubMed  Google Scholar 

  • Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002).

    PubMed  Google Scholar 

  • Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845–867 (2002).

    CAS  PubMed  Google Scholar 

  • Adkins, J. N. et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics DOI: 10.1074/mcp.M200066-MCP200 (2002).

  • Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin, T. J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002).

    CAS  PubMed  Google Scholar 

  • Baliga, N. S. et al. Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Proc. Natl Acad. Sci. USA 99, 14913–14918 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashman, K., Moran, M. F., Sicheri, F., Pawson, T. & Tyers, M. Cell signalling—the proteomics of it all. Science's STKEhttp://stke.sciencemag.org/cgi/content/full/sigtrans;2001/103/pe33〉 (2001).

  • Rappsilber, J., Siniossoglou, S., Hurt, E. C. & Mann, M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal. Chem. 72, 267–275 (2000).

    CAS  PubMed  Google Scholar 

  • Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    CAS  Google Scholar 

  • Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • Shevchenko, A., Schaft, D., Roguev, A., Pijnappel, W. W. & Stewart, A. F. Deciphering protein complexes and protein interaction networks by tandem affinity purification and mass spectrometry: analytical perspective. Mol. Cell. Proteomics 1, 204–212 (2002).

    CAS  PubMed  Google Scholar 

  • Blagoev, B. et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. advance online publication, 10 February 2003 (doi:10.1038/nbt790).

  • Ranish, J. A. et al. The study of macromolecular complexes by quantitative proteomics. Nature Genet. (in the press).

  • MacDonald, J. A., Mackey, A. J., Pearson, W. R. & Haystead, T. A. A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol. Cell. Proteomics 1, 314–322 (2002).

    CAS  PubMed  Google Scholar 

  • Neubauer, G. et al. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl Acad. Sci. USA 94, 385–390 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet. 20, 46–50 (1998).

    CAS  PubMed  Google Scholar 

  • Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rappsilber, J., Ryder, U., Lamond, A. I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Licklider, L. J., Gygi, S. P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • Taylor, S. W., Fahy, E. & Ghosh, S. S. Global organellar proteomics. Trends Biotechnol. 21, 82–88 (2003).

    CAS  PubMed  Google Scholar 

  • Leung, A. K. & Lamond, A. I. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J. Cell Biol. 157, 615–629 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002).

    CAS  PubMed  Google Scholar 

  • Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol. (in the press).

  • MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl Acad. Sci. USA 99, 7900–7905 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl Acad. Sci. USA 97, 179–184 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031–1039 (2002).

    CAS  PubMed  Google Scholar 

  • Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnol. 20, 301–305 (2002).

    CAS  Google Scholar 

  • Peng, J. & Gygi, S. P. Proteomics: the move to mixtures. J. Mass Spectrom. 36, 1083–1091 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • Hanson, C. L., Fucini, P., Ilag, L. L., Nierhaus, K. H. & Robinson, C. V. Dissociation of intact Escherichia coli ribosomes in a mass spectrometer—evidence for conformational change in a ribosome elongation factor G complex. J. Biol. Chem. 278, 1259–1267 (2002).

    PubMed  Google Scholar 

  • Oh, H. et al. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl Acad. Sci. USA 99, 15863–15868 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, S. L. & Chait, B. T. Mass spectrometry as a tool for protein crystallography. Annu. Rev. Biophys. Biomol. Struct. 30, 67–85 (2001).

    CAS  PubMed  Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebersold, R. & Watts, J. D. The need for national centers for proteomics. Nature Biotechnol. 20, 651 (2002).

    CAS  Google Scholar 

  • Mann, M. A home for proteomics data? Nature 420, 21 (2002).

    ADS  CAS  Google Scholar 

  • Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002).

    CAS  PubMed  Google Scholar 

  • Mørtz, E. et al. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc. Natl Acad. Sci. USA 93, 8264–8267 (1996).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Stoeckli, M., Chaurand, P., Hallahan, D. E. & Caprioli, R. M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature Med. 7, 493–496 (2001).

    CAS  PubMed  Google Scholar 

  • Goodlett, D. R. et al. Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searching. Anal. Chem. 72, 1112–1118 (2000).

    CAS  PubMed  Google Scholar 

  • Smith, R. D. et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2, 513–523 (2002).

    CAS  PubMed  Google Scholar 

  • Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731 (2002).

    CAS  PubMed  Google Scholar 

  • Guina, T. et al. Quantitative proteomic analysis of Pseudomonas aeruginosa indicates synthesis of quinolone signal in adaptation to cystic fibrosis airways. Proc. Natl Acad. Sci. USA (in the press).

  • Fox, A. H. et al. Paraspeckles. A novel nuclear domain. Curr. Biol. 12, 13–25 (2002).

    CAS  PubMed  Google Scholar