nature.com

The structure of DNA in the nucleosome core - Nature

  • ️Davey, Curt A.
  • ️Thu May 08 2003

References

  1. van Holde, K. E. in Chromatin (ed. Rich, A.) (Springer, New York, 1988)

    Google Scholar 

  2. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999)

    Article  CAS  Google Scholar 

  3. Elgin, S. C. R. & Workman, J. L. (eds) Chromatin Structure and Gene Expression (Oxford Univ. Press, Oxford, 2000)

  4. Simpson, R. T. Nucleosome positioning: Occurrence, mechanisms, and functional consequences. Prog. Nucleic Acid Res. Mol. Biol. 40, 143–184 (1991)

    Article  CAS  Google Scholar 

  5. Wolffe, A. P. & Kurumizaka, H. The nucleosome: A powerful regulator of transcription. Prog. Nucleic Acid Res. Mol. Biol. 61, 379–422 (1998)

    Article  CAS  Google Scholar 

  6. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Luger, K., Maeder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992)

    Article  CAS  Google Scholar 

  9. Kornberg, R. D. & Lorch, Y. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8, 563–587 (1992)

    Article  CAS  Google Scholar 

  10. Shimizu, M., Roth, S. Y., Szent-Gyorgyi, C. & Simpson, R. T. Nucleosomes are positioned with base pair precision adjacent to the alpha 2 operator in Saccharomyces cerevisiae. EMBO J. 10, 3033–3041 (1991)

    Article  CAS  Google Scholar 

  11. Flaus, A. & Richmond, T. J. Positioning and stability of nucleosomes on MMTV 3′LTR sequences. J. Mol. Biol. 275, 427–441 (1998)

    Article  CAS  Google Scholar 

  12. Meersseman, G., Pennings, S. & Bradbury, E. M. Mobile nucleosomes—a general behaviour. EMBO J. 11, 2951–2959 (1992)

    Article  CAS  Google Scholar 

  13. Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: A dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995)

    Article  CAS  Google Scholar 

  14. Studitsky, V. M., Kassavetis, G. A., Geiduschek, E. P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Tsukiyama, T. The in vivo functions of ATP-dependent chromatin-remodelling factors. Nature Rev. Mol. Cell Biol. 3, 422–429 (2002)

    Article  CAS  Google Scholar 

  16. Calladine, C. R. & Drew, H. R. Principles of sequence-dependent flexure of DNA. J. Mol. Biol. 192, 907–918 (1986)

    Article  CAS  Google Scholar 

  17. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002)

    Article  CAS  Google Scholar 

  18. Davey, C. A. & Richmond, T. J. DNA-dependent divalent cation binding in the nucleosome core particle. Proc. Natl Acad. Sci. USA 99, 11169–11175 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Crick, F. H. C. & Klug, A. Kinky helix. Nature 255, 530–533 (1975)

    Article  ADS  CAS  Google Scholar 

  20. El Hassan, M. A. & Calladine, C. R. Conformational characteristics of DNA: Empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil. Trans. R. Soc. Lond. A 355, 43–100 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Lavery, R. & Sklenar, H. The definition of generalised helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynam. 6, 63–91 (1988)

    Article  CAS  Google Scholar 

  22. Young, M. A., Ravishanker, G., Beveridge, D. L. & Berman, H. M. Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA–protein complexes. Biophys. J. 68, 2454–2468 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Olson, W. K. Simulating DNA at low resolution. Curr. Opin. Struct. Biol. 6, 242–256 (1996)

    Article  CAS  Google Scholar 

  24. Dickerson, R. E. DNA bending: The prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926 (1998)

    Article  CAS  Google Scholar 

  25. Goodsell, D. S. & Dickerson, R. E. Bending and curvature calculations in B-DNA. Nucleic Acids Res. 22, 5497–5503 (1994)

    Article  CAS  Google Scholar 

  26. El Hassan, M. A. & Calladine, C. R. Two distinct modes of protein-induced bending in DNA. J. Mol. Biol. 282, 331–343 (1998)

    Article  CAS  Google Scholar 

  27. Packer, M. J. & Hunter, C. A. Sequence–structure relationships in DNA oligomers: A computational approach. J. Am. Chem. Soc. 123, 7399–7406 (2001)

    Article  CAS  Google Scholar 

  28. Yanagi, K., Prive, G. G. & Dickerson, R. E. Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. J. Mol. Biol. 217, 201–214 (1991)

    Article  CAS  Google Scholar 

  29. Shrader, T. E. & Crothers, D. M. Effects of DNA sequence and histone–histone interactions on nucleosome placement. J. Mol. Biol. 216, 69–84 (1990)

    Article  CAS  Google Scholar 

  30. Anselmi, C., Bocchinfuso, G., De Santis, P., Savino, M. & Scipioni, A. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J. Mol. Biol. 286, 1293–1301 (1999)

    Article  CAS  Google Scholar 

  31. Dickerson, R. E. & Chiu, T. K. Helix bending as a factor in protein/DNA recognition. Biopolymers 44, 361–403 (1997)

    Article  CAS  Google Scholar 

  32. Packer, M. J. & Hunter, C. A. Sequence-dependent DNA structure: The role of the sugar-phosphate backbone. J. Mol. Biol. 280, 407–420 (1998)

    Article  CAS  Google Scholar 

  33. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. J. Biol. Chem. 257, 14686–14707 (1982)

    CAS  PubMed  Google Scholar 

  34. Olson, W. K., Gorin, A. A., Lu, X. J., Hock, L. M. & Zhurkin, V. B. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes. Proc. Natl Acad. Sci. USA 95, 11163–11168 (1998)

    Article  ADS  CAS  Google Scholar 

  35. Travers, A. A. & Klug, A. The bending of DNA in nucleosomes and its wider implications. Phil. Trans. R. Soc. Lond. B 317, 537–561 (1987)

    Article  ADS  CAS  Google Scholar 

  36. Richmond, T. J. & Widom, J. in Chromatin Structure and Gene Expression (eds Elgin, S. C. R. & Workman, J. L.) 1–23 (Oxford Univ. Press, Oxford, 2000)

    Google Scholar 

  37. Widom, J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34, 269–324 (2001)

    Article  CAS  Google Scholar 

  38. Zivanovic, Y., Goulet, I., Revet, B., Le Bret, M. & Prunell, A. Chromatin reconstitution on small DNA rings II. DNA supercoiling on the nucleosome. J. Mol. Biol. 200, 267–290 (1988)

    Article  CAS  Google Scholar 

  39. Klug, A. & Lutter, L. C. The helical periodicity of DNA on the nucleosome. Nucleic Acids Res. 9, 4267–4283 (1981)

    Article  CAS  Google Scholar 

  40. Arnott, S., Dover, S. D. & Wonacott, A. J. Least-squares refinement of the crystal and molecular structures of DNA and RNA from X-ray data and standard bond lengths and angles. Acta Crystallogr. B 25, 2192–2206 (1969)

    Article  CAS  Google Scholar 

Download references