Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers - Nature
- ️Gottlieb, Philip A.
- ️Thu Jul 08 2004
References
Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598 (2000)
Andersen, O. S. et al. Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. Methods Enzymol. 294, 208–224 (1999)
Patel, A. J. et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neurosci. 2, 422–426 (1999)
Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol. 13, 422–427 (2001)
Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9, 696–703 (2002)
Lundbæk, J. A. & Andersen, O. S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104, 645–673 (1994)
Hwang, T. C., Koeppe, R. E. II & Andersen, O. S. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42, 13646–13658 (2003)
Goulian, M. et al. Gramicidin channel kinetics under tension. Biophys. J. 74, 328–337 (1998)
Oswald, R. E., Suchyna, T. M., McFeeters, R., Gottlieb, P. & Sachs, F. Solution structure of peptide toxins that block mechanosensitive ion channels. J. Biol. Chem. 277, 34443–34450 (2002)
Ostrow, K. L. et al. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon 42, 263–274 (2003)
Markin, V. S. & Sachs, F. Thermodynamics of mechanosensitivity. Physical Biol. (in the press)
Suchyna, T. & Sachs, F. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. Phys. Biol. 1, 1–18 (2004)
Ladokhin, A. S., Jayasinghe, S. & White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem. 285, 235–245 (2000)
White, S. H., Wimley, W. C., Ladokhin, A. S. & Hristova, K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol. 295, 62–87 (1998)
Kim, J., Mosior, M., Chung, L. A., Wu, H. & McLaughlin, S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys. J. 60, 135–148 (1991)
Lundbæk, J. A. & Andersen, O. S. Spring constants for channel-induced lipid bilayer deformations—estimates using gramicidin channels. Biophys. J. 76, 889–895 (1999)
O'Connell, A. M., Koeppe, R. E. II & Andersen, O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science 250, 1256–1259 (1990)
Elliott, J. R., Needham, D., Dilger, J. P. & Haydon, D. A. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim. Biophys. Acta 735, 95–103 (1983)
Huang, H. W. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070 (1986)
Koeppe, R. E. II et al. On the helix sense of gramicidin A single channels. Proteins 12, 49–62 (1992)
Trudelle, Y. & Heitz, F. Synthesis and characterization of Tyr(Bzl)9,11,13,15 and Tyr9,11,13,15 gramicidin A. Int. J. Pept. Protein Res. 30, 163–169 (1987)
Lundbæk, J. A. et al. Regulation of sodium channel function by bilayer elasticity the importance of hydrophobic coupling: effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol. 123, 599–621 (2004)
Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001)
Lehtonen, J. Y. & Kinnunen, P. K. Phospholipase A2 as a mechanosensor. Biophys. J. 68, 1888–1894 (1995)
Gudi, S., Nolan, J. P. & Frangos, J. A. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc. Natl Acad. Sci. USA 95, 2515–2519 (1998)
Laitko, U. & Morris, C. E. Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J. Gen. Physiol. 123, 135–154 (2004)
Greathouse, D. V., Koeppe, R. E. II, Providence, L. L., Shobana, S. & Andersen, O. S. Design and characterization of gramicidin channels. Methods Enzymol. 294, 525–550 (1999)
Andersen, O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys. J. 41, 119–133 (1983)
Bett, G. C. & Sachs, F. Activation and inactivation of mechanosensitive currents in the chick heart. J. Membr. Biol. 173, 237–254 (2000)