Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics - Nature
- ️Springer, Timothy A.
- ️Sun Sep 19 2004
Hughes, P. E. & Pfaff, M. Integrin affinity modulation. Trends Cell Biol. 8, 359–364 (1998)
Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunol. Rev. 186, 141–163 (2002)
Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002)
Springer, T. A. & Wang, J.-h. in Cell Surface Receptors (ed. Garcia, K. C.) (Elsevier, San Diego, 2004)
Coller, B. S. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J. Clin. Invest. 99, 1467–1471 (1997)
Takagi, J., Strokovich, K., Springer, T. A. & Walz, T. Structure of integrin α5β1 in complex with fibronectin. EMBO J. 22, 4607–4615 (2003)
Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001)
Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002)
Luo, B.-H., Springer, T. A. & Takagi, J. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Proc. Natl Acad. Sci. USA 100, 2403–2408 (2003)
Luo, B.-H., Strokovich, K., Walz, T., Springer, T. A. & Takagi, J. Allosteric β1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J. Biol. Chem. 279, 27466–27471 (2004)
Luo, B.-H., Springer, T. A. & Takagi, J. High affinity ligand binding by integrins does not involve head separation. J. Biol. Chem. 278, 17185–17189 (2003)
Mould, A. P. et al. Structure of an integrin-ligand complex deduced from solution X-ray scattering and site-directed mutagenesis. J. Biol. Chem. 278, 39993–39999 (2003)
Mould, A. P. et al. Conformational changes in the integrin βA domain provide a mechanism for signal transduction via hybrid domain movement. J. Biol. Chem. 278, 17028–17035 (2003)
Du, X. et al. Ligands “activate” integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991)
Adair, B. D. & Yeager, M. Three-dimensional model of the human platelet integrin αIIbβ3 based on electron cryomicroscopy and X-ray crystallography. Proc. Natl Acad. Sci. USA 99, 14059–14064 (2002)
Luo, B.-H., Springer, T. A. & Takagi, J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol. 2, 776–786 (2004)
Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face. Cell 110, 587–597 (2002)
Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003)
Coller, B. S., Peerschke, E. I., Scudder, L. E. & Sullivan, C. A. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J. Clin. Invest. 72, 325–338 (1983)
Kamata, T., Tieu, K. K., Springer, T. A. & Takada, Y. Amino acid residues in the αIIb subunit that are critical for ligand binding to integrin αIIbβ3 are clustered in the β-propeller model. J. Biol. Chem. 276, 44275–44283 (2001)
Artoni, A. et al. The specificity determining loop and α helix 1 on human integrin β3 determine the binding of murine monoclonal antigbody 7E3 to αIIbβ3: implications for the mechanism of integrin activation. Proc. Natl Acad. Sci. USA (in the press) (2004)
Zavortink, M., Bunch, T. A. & Brower, D. L. Functional properties of alternatively spliced forms of the Drosphila PS2 integrin α subunit. Cell Adhes. Commun. 1, 251–264 (1993)
von der Mark, H. et al. Alternative splice variants of α7β1 integrin selectivity recognize different laminin isoforms. J. Biol. Chem. 277, 6012–6016 (2002)
Springer, T. A. Predicted and experimental structures of integrins and β-propellers. Curr. Opin. Struct. Biol. 12, 802–813 (2002)
Lee, J.-O., Rieu, P., Arnaout, M. A. & Liddington, R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–638 (1995)
Lee, J.-O., Bankston, L. A., Arnaout, M. A. & Liddington, R. C. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3, 1333–1340 (1995)
Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003)
Scarborough, R. M. & Gretler, D. D. Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: novel parenteral and potential oral antithrombotic agents. J. Med. Chem. 43, 3453–3473 (2000)
Gottschalk, K. E. & Kessler, H. The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. Angew. Chem. Int. Edn Engl. 41, 3767–3774 (2002)
Egbertson, M. S. et al. Non-peptide GPIIb/IIIa inhibitors. 20. Centrally constrained thienothiophene alpha-sulfonamides are potent, long acting in vivo inhibitors of platelet aggregation. J. Med. Chem. 42, 2409–2421 (1999)
Scarborough, R. M. et al. Design of potent and specific integrin antagonists. J. Biol. Chem. 268, 1066–1073 (1993)
Mould, A. P. et al. Integrin activation involves a conformational change in the α1 helix of the β subunit A-domain. J. Biol. Chem. 277, 19800–19805 (2002)
Chen, J. F., Salas, A. & Springer, T. A. Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nature Struct. Biol. 10, 995–1001 (2003)
Perutz, M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophys. 22, 139–237 (1989)
Love, C. A. et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nature Struct. Biol. 10, 843–848 (2003)
Bork, P., Doerks, T., Springer, T. A. & Snel, B. Domains in plexins: Links to integrins and transcription factors. Trends Biochem. Sci. 24, 261–263 (1999)
Calvete, J. J., Henschen, A. & González-Rodríguez, J. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the β-subunits of the integrin family. Biochem. J. 274, 63–71 (1991)
Beglova, N., Blacklow, S. C., Takagi, J. & Springer, T. A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature Struct. Biol. 9, 282–287 (2002)
Newman, P. J., Derbes, R. S. & Aster, R. H. The human platelet alloantigens, PlA1 and PlA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. J. Clin. Invest. 83, 1778–1781 (1989)
Watkins, N. A. et al. HPA-1a phenotype-genotype discrepancy reveals a naturally occurring Arg93Gln substitution in the platelet β3 integrin that disrupts the HPA-1a epitope. Blood 99, 1833–1839 (2002)
Kunicki, T. J. et al. The P1A alloantigen system is a sensitive indicator of the structural integrity of the amino-terminal domain of the human integrin β3 subunit. Blood Cells Mol. Dis. 21, 131–141 (1995)
Chen, J. F. et al. The relative influence of metal ion binding sites in the I-like domain and the interface with the hybrid domain on rolling and firm adhesion by integrin α4β7. J. Biol. Chem. (in the press)
Luo, B.-H., Takagi, J. & Springer, T. A. Locking the β3 integrin I-like domain into high and low affinity conformations with disulfides. J. Biol. Chem. 279, 10215–10221 (2004)
Yang, W., Shimaoka, M., Chen, J. F. & Springer, T. A. Activation of integrin β subunit I-like domains by one-turn C-terminal α-helix deletions. Proc. Natl Acad. Sci. USA 101, 2333–2338 (2004)
Takagi, J., Erickson, H. P. & Springer, T. A. C-terminal opening mimics “inside-out” activation of integrin α5β1. Nature Struct. Biol. 8, 412–416 (2001)
Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–138 (1997)
Merritt, E. A. & Murphy, M. E. P. Raster 3D version 2.0: a program for photorealistic graphics. Acta Crystallogr. D 50, 869–873 (1994)
Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997)
Puzon-McLaughlin, W., Kamata, T. & Takada, Y. Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin αIIbβ3. J. Biol. Chem. 275, 7795–7802 (2000)
Tozer, E. C., Liddington, R. C., Sutcliffe, M. J., Smeeton, A. H. & Loftus, J. C. Ligand binding to integrin αIIbβ3 is dependent on a MIDAS-like domain in the β3 subunit. J. Biol. Chem. 271, 21978–21984 (1996)