nature.com

Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics - Nature

  • ️Springer, Timothy A.
  • ️Sun Sep 19 2004
  • Hughes, P. E. & Pfaff, M. Integrin affinity modulation. Trends Cell Biol. 8, 359–364 (1998)

    Article  CAS  Google Scholar 

  • Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunol. Rev. 186, 141–163 (2002)

    Article  CAS  Google Scholar 

  • Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002)

    Article  CAS  Google Scholar 

  • Springer, T. A. & Wang, J.-h. in Cell Surface Receptors (ed. Garcia, K. C.) (Elsevier, San Diego, 2004)

    Google Scholar 

  • Coller, B. S. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J. Clin. Invest. 99, 1467–1471 (1997)

    Article  CAS  Google Scholar 

  • Takagi, J., Strokovich, K., Springer, T. A. & Walz, T. Structure of integrin α5β1 in complex with fibronectin. EMBO J. 22, 4607–4615 (2003)

    Article  CAS  Google Scholar 

  • Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001)

    Article  ADS  CAS  Google Scholar 

  • Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002)

    Article  ADS  CAS  Google Scholar 

  • Luo, B.-H., Springer, T. A. & Takagi, J. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Proc. Natl Acad. Sci. USA 100, 2403–2408 (2003)

    Article  ADS  CAS  Google Scholar 

  • Luo, B.-H., Strokovich, K., Walz, T., Springer, T. A. & Takagi, J. Allosteric β1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J. Biol. Chem. 279, 27466–27471 (2004)

    Article  CAS  Google Scholar 

  • Luo, B.-H., Springer, T. A. & Takagi, J. High affinity ligand binding by integrins does not involve head separation. J. Biol. Chem. 278, 17185–17189 (2003)

    Article  CAS  Google Scholar 

  • Mould, A. P. et al. Structure of an integrin-ligand complex deduced from solution X-ray scattering and site-directed mutagenesis. J. Biol. Chem. 278, 39993–39999 (2003)

    Article  CAS  Google Scholar 

  • Mould, A. P. et al. Conformational changes in the integrin βA domain provide a mechanism for signal transduction via hybrid domain movement. J. Biol. Chem. 278, 17028–17035 (2003)

    Article  CAS  Google Scholar 

  • Du, X. et al. Ligands “activate” integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991)

    Article  CAS  Google Scholar 

  • Adair, B. D. & Yeager, M. Three-dimensional model of the human platelet integrin αIIbβ3 based on electron cryomicroscopy and X-ray crystallography. Proc. Natl Acad. Sci. USA 99, 14059–14064 (2002)

    Article  ADS  CAS  Google Scholar 

  • Luo, B.-H., Springer, T. A. & Takagi, J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol. 2, 776–786 (2004)

    CAS  Google Scholar 

  • Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face. Cell 110, 587–597 (2002)

    Article  CAS  Google Scholar 

  • Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003)

    Article  ADS  CAS  Google Scholar 

  • Coller, B. S., Peerschke, E. I., Scudder, L. E. & Sullivan, C. A. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J. Clin. Invest. 72, 325–338 (1983)

    Article  CAS  Google Scholar 

  • Kamata, T., Tieu, K. K., Springer, T. A. & Takada, Y. Amino acid residues in the αIIb subunit that are critical for ligand binding to integrin αIIbβ3 are clustered in the β-propeller model. J. Biol. Chem. 276, 44275–44283 (2001)

    Article  CAS  Google Scholar 

  • Artoni, A. et al. The specificity determining loop and α helix 1 on human integrin β3 determine the binding of murine monoclonal antigbody 7E3 to αIIbβ3: implications for the mechanism of integrin activation. Proc. Natl Acad. Sci. USA (in the press) (2004)

  • Zavortink, M., Bunch, T. A. & Brower, D. L. Functional properties of alternatively spliced forms of the Drosphila PS2 integrin α subunit. Cell Adhes. Commun. 1, 251–264 (1993)

    Article  CAS  Google Scholar 

  • von der Mark, H. et al. Alternative splice variants of α7β1 integrin selectivity recognize different laminin isoforms. J. Biol. Chem. 277, 6012–6016 (2002)

    Article  CAS  Google Scholar 

  • Springer, T. A. Predicted and experimental structures of integrins and β-propellers. Curr. Opin. Struct. Biol. 12, 802–813 (2002)

    Article  CAS  Google Scholar 

  • Lee, J.-O., Rieu, P., Arnaout, M. A. & Liddington, R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–638 (1995)

    Article  CAS  Google Scholar 

  • Lee, J.-O., Bankston, L. A., Arnaout, M. A. & Liddington, R. C. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3, 1333–1340 (1995)

    Article  CAS  Google Scholar 

  • Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003)

    Article  CAS  Google Scholar 

  • Scarborough, R. M. & Gretler, D. D. Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: novel parenteral and potential oral antithrombotic agents. J. Med. Chem. 43, 3453–3473 (2000)

    Article  CAS  Google Scholar 

  • Gottschalk, K. E. & Kessler, H. The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. Angew. Chem. Int. Edn Engl. 41, 3767–3774 (2002)

    Article  CAS  Google Scholar 

  • Egbertson, M. S. et al. Non-peptide GPIIb/IIIa inhibitors. 20. Centrally constrained thienothiophene alpha-sulfonamides are potent, long acting in vivo inhibitors of platelet aggregation. J. Med. Chem. 42, 2409–2421 (1999)

    Article  CAS  Google Scholar 

  • Scarborough, R. M. et al. Design of potent and specific integrin antagonists. J. Biol. Chem. 268, 1066–1073 (1993)

    CAS  PubMed  Google Scholar 

  • Mould, A. P. et al. Integrin activation involves a conformational change in the α1 helix of the β subunit A-domain. J. Biol. Chem. 277, 19800–19805 (2002)

    Article  CAS  Google Scholar 

  • Chen, J. F., Salas, A. & Springer, T. A. Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nature Struct. Biol. 10, 995–1001 (2003)

    Article  CAS  Google Scholar 

  • Perutz, M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophys. 22, 139–237 (1989)

    Article  CAS  Google Scholar 

  • Love, C. A. et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nature Struct. Biol. 10, 843–848 (2003)

    Article  CAS  Google Scholar 

  • Bork, P., Doerks, T., Springer, T. A. & Snel, B. Domains in plexins: Links to integrins and transcription factors. Trends Biochem. Sci. 24, 261–263 (1999)

    Article  CAS  Google Scholar 

  • Calvete, J. J., Henschen, A. & González-Rodríguez, J. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the β-subunits of the integrin family. Biochem. J. 274, 63–71 (1991)

    Article  CAS  Google Scholar 

  • Beglova, N., Blacklow, S. C., Takagi, J. & Springer, T. A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature Struct. Biol. 9, 282–287 (2002)

    Article  CAS  Google Scholar 

  • Newman, P. J., Derbes, R. S. & Aster, R. H. The human platelet alloantigens, PlA1 and PlA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. J. Clin. Invest. 83, 1778–1781 (1989)

    Article  CAS  Google Scholar 

  • Watkins, N. A. et al. HPA-1a phenotype-genotype discrepancy reveals a naturally occurring Arg93Gln substitution in the platelet β3 integrin that disrupts the HPA-1a epitope. Blood 99, 1833–1839 (2002)

    Article  CAS  Google Scholar 

  • Kunicki, T. J. et al. The P1A alloantigen system is a sensitive indicator of the structural integrity of the amino-terminal domain of the human integrin β3 subunit. Blood Cells Mol. Dis. 21, 131–141 (1995)

    Article  CAS  Google Scholar 

  • Chen, J. F. et al. The relative influence of metal ion binding sites in the I-like domain and the interface with the hybrid domain on rolling and firm adhesion by integrin α4β7. J. Biol. Chem. (in the press)

  • Luo, B.-H., Takagi, J. & Springer, T. A. Locking the β3 integrin I-like domain into high and low affinity conformations with disulfides. J. Biol. Chem. 279, 10215–10221 (2004)

    Article  CAS  Google Scholar 

  • Yang, W., Shimaoka, M., Chen, J. F. & Springer, T. A. Activation of integrin β subunit I-like domains by one-turn C-terminal α-helix deletions. Proc. Natl Acad. Sci. USA 101, 2333–2338 (2004)

    Article  ADS  CAS  Google Scholar 

  • Takagi, J., Erickson, H. P. & Springer, T. A. C-terminal opening mimics “inside-out” activation of integrin α5β1. Nature Struct. Biol. 8, 412–416 (2001)

    Article  CAS  Google Scholar 

  • Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–138 (1997)

    Article  CAS  Google Scholar 

  • Merritt, E. A. & Murphy, M. E. P. Raster 3D version 2.0: a program for photorealistic graphics. Acta Crystallogr. D 50, 869–873 (1994)

    Article  CAS  Google Scholar 

  • Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997)

    Article  CAS  Google Scholar 

  • Puzon-McLaughlin, W., Kamata, T. & Takada, Y. Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin αIIbβ3. J. Biol. Chem. 275, 7795–7802 (2000)

    Article  CAS  Google Scholar 

  • Tozer, E. C., Liddington, R. C., Sutcliffe, M. J., Smeeton, A. H. & Loftus, J. C. Ligand binding to integrin αIIbβ3 is dependent on a MIDAS-like domain in the β3 subunit. J. Biol. Chem. 271, 21978–21984 (1996)

    Article  CAS  Google Scholar