nature.com

Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks - Nature

  • ️Halazonetis, Thanos D.
  • ️Wed Nov 03 2004

References

  1. Schultz, L. B., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390 (2000)

    Article  CAS  Google Scholar 

  2. Xia, Z., Morales, J. C., Dunphy, W. G. & Carpenter, P. B. Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J. Biol. Chem. 276, 2708–2718 (2001)

    Article  CAS  Google Scholar 

  3. Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell. Biol. 21, 1719–1729 (2001)

    Article  CAS  Google Scholar 

  4. Rappold, I., Iwabuchi, K., Date, T. & Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol. 153, 613–620 (2001)

    Article  CAS  Google Scholar 

  5. Mochan, T. A., Venere, M., DiTullio, R. A. Jr & Halazonetis, T. D. 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res. 63, 8586–8591 (2003)

    CAS  PubMed  Google Scholar 

  6. Ward, I. M., Minn, K., Jorda, K. G. & Chen, J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 278, 19579–19582 (2003)

    Article  CAS  Google Scholar 

  7. Iwabuchi, K. et al. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J. Biol. Chem. 278, 36487–36495 (2003)

    Article  CAS  Google Scholar 

  8. Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988)

    Article  ADS  CAS  Google Scholar 

  9. Willson, J., Wilson, S., Warr, N. & Watts, F. Z. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res. 25, 2138–2146 (1997)

    Article  CAS  Google Scholar 

  10. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S. & Yanagida, M. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11, 3387–3400 (1997)

    Article  CAS  Google Scholar 

  11. Boulton, S. J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127–131 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Charier, G. et al. The tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. Structure 12, 1551–1562 (2004)

    Article  CAS  Google Scholar 

  13. Selenko, P. et al. SMN tudor domain structure and its interaction with the Sm proteins. Nature Struct. Biol. 8, 27–31 (2001)

    Article  CAS  Google Scholar 

  14. Sprangers, R., Groves, M. R., Sinning, I. & Sattler, M. High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327, 507–520 (2003)

    Article  CAS  Google Scholar 

  15. Theobald, D. L., Mitton-Fry, R. M. & Wuttke, D. S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003)

    Article  CAS  Google Scholar 

  16. Friesen, W. J., Massenet, S., Paushkin, S., Wyce, A. & Dreyfuss, G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell 7, 1111–1117 (2001)

    Article  CAS  Google Scholar 

  17. Brahms, H., Meheus, L., de Brabandere, V., Fischer, U. & Luhrmann, R. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531–1542 (2001)

    Article  CAS  Google Scholar 

  18. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002)

    Article  CAS  Google Scholar 

  19. Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002)

    Article  CAS  Google Scholar 

  20. van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002)

    Article  CAS  Google Scholar 

  21. Lacoste, N., Utley, R. T., Hunter, J. M., Poirier, G. G. & Cote, J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277, 30421–30424 (2002)

    Article  CAS  Google Scholar 

  22. Game, J. C., Williamson M. S. & Baccari, C. X-ray survival characteristics and genetic analysis for nine Saccharomyces deletion mutants that affect radiation sensitivity. Genetics online publication, 15 September 2004 (doi:10.1534/genetics.104.028613).

  23. San-Segundo, P. A. & Roeder, G. S. Role for the silencing protein Dot1 in meiotic checkpoint control. Mol. Biol. Cell 11, 3601–3615 (2000)

    Article  CAS  Google Scholar 

  24. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999)

    Article  CAS  Google Scholar 

  25. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003)

    Article  CAS  Google Scholar 

  27. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Mozziconacci, J. & Victor, J. M. Nucleosome gaping supports a functional structure for the 30 nm chromatin fiber. J. Struct. Biol. 143, 72–76 (2003)

    Article  CAS  Google Scholar 

  29. Hyen, Y. et al. Structural differences in the DNA binding domains of human p53 and its C. elegans ortholog Cep-1. Structure 12, 1237–1243 (2004)

    Article  Google Scholar 

  30. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase ɛ with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004)

    Article  CAS  Google Scholar 

Download references