nature.com

Nucleolar proteome dynamics - Nature

  • ️Mann, Matthias
  • ️Thu Jan 06 2005
  • Visintin, R. & Amon, A. The nucleolus: the magician's hat for cell cycle tricks. Curr. Opin. Cell Biol. 12, 752 (2000)

    Article  CAS  Google Scholar 

  • Guarente, L. Link between aging and the nucleolus. Genes Dev. 11, 2449–2455 (1997)

    Article  CAS  Google Scholar 

  • Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000)

    Article  CAS  Google Scholar 

  • Olson, M. O. Sensing cellular stress: another new function for the nucleolus? Sci. STKE [online] pe10 (2004) (doi:10.1126/stke.2242004pe10)

  • Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)

    Article  ADS  CAS  Google Scholar 

  • Mauramatsu, M., Smetana, K. & Busch, H. Quantitative aspects of isolation of nucleoli of the Walker carcinosarcoma and liver of the rat. Cancer Res. 25, 693–697 (1963)

    Google Scholar 

  • Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  ADS  CAS  Google Scholar 

  • Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002)

    Article  Google Scholar 

  • Trinkle-Mulcahy, L., Sleeman, J. E. & Lamond, A. I. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J. Cell Sci. 114, 4219–4228 (2001)

    CAS  PubMed  Google Scholar 

  • Li, D., Meier, U. T., Dobrowolska, G. & Krebs, E. G. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J. Biol. Chem. 272, 3773–3779 (1997)

    Article  CAS  Google Scholar 

  • Yamamoto, R. T., Nogi, Y., Dodd, J. A. & Nomura, M. RRN3 gene of Saccharomyces cerevisiae encodes an essential RNA polymerase I transcription factor which interacts with the polymerase independently of DNA template. EMBO J. 15, 3964–3973 (1996)

    Article  CAS  Google Scholar 

  • Charroux, B. et al. Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J. Cell Biol. 148, 1177–1186 (2000)

    Article  CAS  Google Scholar 

  • Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998)

    Article  CAS  Google Scholar 

  • Misteli, T. Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–847 (2001)

    Article  ADS  CAS  Google Scholar 

  • Lamond, A. I. & Sleeman, J. E. Nuclear substructure and dynamics. Curr. Biol. 13, R825–R828 (2003)

    Article  CAS  Google Scholar 

  • Leung, A. K. & Lamond, A. I. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J. Cell Biol. 157, 615–629 (2002)

    Article  CAS  Google Scholar 

  • Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002)

    Article  CAS  Google Scholar 

  • Blagoev, B., Ong, S. E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnol. 22, 1139–1145 (2004)

    Article  CAS  Google Scholar 

  • Perry, R. P. & Kelley, D. E. Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J. Cell. Physiol. 76, 127–139 (1970)

    Article  CAS  Google Scholar 

  • Raghavan, A. et al. Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res. 30, 5529–5538 (2002)

    Article  CAS  Google Scholar 

  • Tschochner, H. & Hurt, E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13, 255–263 (2003)

    Article  CAS  Google Scholar 

  • Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002)

    Article  ADS  CAS  Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998)

    Article  ADS  CAS  Google Scholar 

  • Tamm, I., Hand, R. & Caliguiri, L. A. Action of dichlorobenzimidazole riboside on RNA synthesis in L-929 and HeLa cells. J. Cell Biol. 69, 229–240 (1976)

    Article  CAS  Google Scholar 

  • Mattsson, K., Pokrovskaja, K., Kiss, C., Klein, G. & Szekely, L. Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc. Natl Acad. Sci. USA 98, 1012–1017 (2001)

    Article  ADS  CAS  Google Scholar 

  • Olsen, J. V., Ong, S. E. & Mann, M. Trypsin cleaves exclusively C-terminal to Arginine and lysine residues. Mol. Cell. Proteomics 6, 608–614 (2004)

    Article  Google Scholar 

  • Leung, A. K. et al. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J. Cell Biol. 166, 787–800 (2004)

    Article  CAS  Google Scholar 

  • Masson, C. et al. Conditions favoring RNA polymerase I transcription in permeabilized cells. Exp. Cell Res. 226, 114–125 (1996)

    Article  CAS  Google Scholar 

  • Boisvert, F. M., Hendzel, M. J. & Bazett-Jones, D. P. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J. Cell Biol. 148, 283–292 (2000)

    Article  CAS  Google Scholar 

  • Scherl, A. et al. Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100–4109 (2002)

    Article  CAS  Google Scholar