nature.com

Correlation of structural elements and infectivity of the HET-s prion - Nature

  • ️Riek, Roland
  • ️Thu Jun 09 2005

References

  1. Alper, T., Cramp, W. A., Haig, D. A. & Clarke, M. C. Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766 (1967)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982)

    ADS  CAS  PubMed  Google Scholar 

  3. Sparrer, H. E., Santoso, A., Szoka, F. C. Jr & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI + ] factor by in vitro-converted Sup35 protein. Science 289, 595–599 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA 99, 7402–7407 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Glass, N. L. & Kaneko, I. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot. Cell 2, 1–8 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saupe, S. J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 64, 489–502 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turcq, B., Deleu, C., Denayrolles, M. & Begueret, J. Two allelic genes responsible for vegetative incompatibility in the fungus Podospora anserina are not essential for cell viability. Mol. Gen. Genet. 228, 265–269 (1991)

    Article  CAS  PubMed  Google Scholar 

  11. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dos Reis, S. et al. The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J. Biol. Chem. 277, 5703–5706 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Balguerie, A. et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J. 22, 2071–2081 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coustou-Linares, V., Maddelein, M. L., Begueret, J. & Saupe, S. J. In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol. Microbiol. 42, 1325–1335 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Balguerie, A. et al. The sequences appended to the amyloid core region of the HET-s prion protein determine higher-order aggregate organization in vivo. J. Cell Sci. 117, 2599–2610 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Hoshino, M. et al. Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nature Struct. Biol. 9, 332–336 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Lührs, T. et al. The 3D structure of Alzheimer's Aβ(1–42) fibrils. Nature (submitted)

  18. Verel, R., Ernst, M. & Meier, B. H. Adiabatic dipolar recoupling in solid-state NMR: The DREAM scheme. J. Magn. Reson. 150, 81–99 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Siemer, A. B., Ritter, C., Ernst, M., Riek, R. & Meier, B. H. High-resolution solid-state NMR of the prion protein HET-s in its amyloid conformation. Angew. Chem. Int. Edn Engl. 44, 2441–2444 (2005)

    Article  CAS  Google Scholar 

  20. Wishart, D. S. & Sykes, B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180 (1994)

    Article  CAS  PubMed  Google Scholar 

  21. Javitch, J. A., Shi, L. & Liapakis, G. Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors. Methods Enzymol. 343, 137–156 (2002)

    Article  PubMed  Google Scholar 

  22. Tycko, R. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr. Opin. Struct. Biol. 14, 96–103 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Laws, D. D. et al. Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc. Natl Acad. Sci. USA 98, 11686–11690 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamaguchi, K. et al. Core and heterogeneity of β2-microglobulin amyloid fibrils as revealed by H/D exchange. J. Mol. Biol. 338, 559–571 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Harper, J. D. & Lansbury, P. T. Jr Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Grzesiek, S. et al. 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-γ. Biochemistry 31, 8180–8190 (1992)

    Article  CAS  PubMed  Google Scholar 

  28. Bracken, C., Palmer, A. G. III & Cavanagh, J. (H)N(COCA)NH and HN(COCA)NH experiments for 1H–15N backbone assignments in 13C/15N-labeled proteins. J. Biomol. NMR 9, 94–100 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Guntert, P., Dotsch, V., Wider, G. & Wuthrich, K. Processing of multidimensional NMR data with the new software Prosa. J. Biomol. NMR 2, 619–629 (1992)

    Article  Google Scholar 

  30. Samoson, A., Tuherm, T. & Past, J. Rotation sweep NMR. Chem. Phys. Lett. 365, 292–299 (2002)

    Article  ADS  CAS  Google Scholar 

Download references