nature.com

The Polycomb group protein EZH2 directly controls DNA methylation - Nature

  • ️Fuks, François
  • ️Wed Dec 14 2005
  • Letter
  • Published: 14 December 2005

Nature volume 439pages 871–874 (2006)Cite this article

A Corrigendum to this article was published on 12 April 2007

Abstract

The establishment and maintenance of epigenetic gene silencing is fundamental to cell determination and function1. The essential epigenetic systems involved in heritable repression of gene activity are the Polycomb group (PcG) proteins2,3 and the DNA methylation4,5 systems. Here we show that the corresponding silencing pathways are mechanistically linked. We find that the PcG protein EZH2 (Enhancer of Zeste homolog 2) interacts—within the context of the Polycomb repressive complexes 2 and 3 (PRC2/3)—with DNA methyltransferases (DNMTs) and associates with DNMT activity in vivo. Chromatin immunoprecipitations indicate that binding of DNMTs to several EZH2-repressed genes depends on the presence of EZH2. Furthermore, we show by bisulphite genomic sequencing that EZH2 is required for DNA methylation of EZH2-target promoters. Our results suggest that EZH2 serves as a recruitment platform for DNA methyltransferases, thus highlighting a previously unrecognized direct connection between two key epigenetic repression systems.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Levine, S. S., King, I. F. & Kingston, R. E. Division of labour in polycomb group repression. Trends Biochem. Sci. 29, 478–485 (2004)

    Article  CAS  Google Scholar 

  3. Lund, A. H. & van Lohuizen, M. Polycomb complexes and silencing mechanisms. Curr. Opin. Cell Biol. 16, 239–246 (2004)

    Article  CAS  Google Scholar 

  4. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002)

    Article  CAS  Google Scholar 

  5. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33 (suppl.), 245–254 (2003)

    Article  CAS  Google Scholar 

  6. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002)

    Article  CAS  Google Scholar 

  8. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002)

    Article  CAS  Google Scholar 

  9. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002)

    Article  CAS  Google Scholar 

  10. Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumour suppressor gene. Cancer Cell 3, 89–95 (2003)

    Article  CAS  Google Scholar 

  11. Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet. 24, 88–91 (2000)

    Article  CAS  Google Scholar 

  12. Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001)

    Article  CAS  Google Scholar 

  13. Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312 (2003)

    Article  CAS  Google Scholar 

  14. Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183–193 (2004)

    Article  CAS  Google Scholar 

  15. Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004)

    Article  CAS  Google Scholar 

  16. Kirmizis, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18, 1592–1605 (2004)

    Article  CAS  Google Scholar 

  17. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003)

    Article  CAS  Google Scholar 

  20. Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genet. 36, 1291–1295 (2004)

    Article  CAS  Google Scholar 

  21. Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genet. 36, 1296–1300 (2004)

    Article  CAS  Google Scholar 

  22. Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003)

    Article  CAS  Google Scholar 

  24. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Silva, J. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003)

    Article  CAS  Google Scholar 

  26. Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225, 294–303 (2000)

    Article  CAS  Google Scholar 

  27. Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Otte for pGEX-EZH2, E. Li for DNMT3A and DNMT3B immune sera, S. Pradhan for the anti-DNMT1 antibody, and C. Beaudouin for pGEX-PLZF. We thank P. Putmans and H. N. Tran for excellent technical assistance. E.V., C.B., R.D., C.D. and L.B. were supported by the Télévie and the F.N.R.S. L.B. was also supported by the “Fondation pour la Recherche Médicale”. D.B. was supported by a Marie Curie Fellowship. F.F. is a “Chercheur Qualifié du F.N.R.S.”. This work was supported by grants from MEC-Plan Nacional de I + D + I to L.D.C., and from the “Fédération Belge contre le Cancer”, the F.N.R.S, “FB Assurances”, and “A.R.C. de la Communauté Française de Belgique” to Y.d.L. and F.F.

Author information

Authors and Affiliations

  1. Faculty of Medicine, Laboratory of Molecular Virology, Free University of Brussels, 808 route de Lennik, 1070, Brussels, Belgium

    Emmanuelle Viré, Carmen Brenner, Rachel Deplus, Loïc Blanchon, Céline Didelot, David Bernard, Yvan de Launoit & François Fuks

  2. CNIO, Cancer Epigenetics Group, C/- Melchor Fernández Almagro 3, 28029, Madrid, Spain

    Mario Fraga & Manel Esteller

  3. ICREA and CRG, Passeig Maritim 37-49, E-08003, Barcelona, Spain

    Lluis Morey & Luciano Di Croce

  4. Division of Biochemistry, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium

    Aleyde Van Eynde & Mathieu Bollen

  5. Faculty of Medicine, Laboratory of Neurophysiology, Free University of Brussels, 808 route de Lennik, 1070, Brussels, Belgium

    Jean-Marie Vanderwinden

  6. UMR 8117, CNRS, Institut Pasteur de Lille, Université de Lille 1, Institut de Biologie de Lille, 1 rue Calmette, 59021, Cedex, Lille, France

    Yvan de Launoit

Authors

  1. Emmanuelle Viré

    You can also search for this author in PubMed Google Scholar

  2. Carmen Brenner

    You can also search for this author in PubMed Google Scholar

  3. Rachel Deplus

    You can also search for this author in PubMed Google Scholar

  4. Loïc Blanchon

    You can also search for this author in PubMed Google Scholar

  5. Mario Fraga

    You can also search for this author in PubMed Google Scholar

  6. Céline Didelot

    You can also search for this author in PubMed Google Scholar

  7. Lluis Morey

    You can also search for this author in PubMed Google Scholar

  8. Aleyde Van Eynde

    You can also search for this author in PubMed Google Scholar

  9. David Bernard

    You can also search for this author in PubMed Google Scholar

  10. Jean-Marie Vanderwinden

    You can also search for this author in PubMed Google Scholar

  11. Mathieu Bollen

    You can also search for this author in PubMed Google Scholar

  12. Manel Esteller

    You can also search for this author in PubMed Google Scholar

  13. Luciano Di Croce

    You can also search for this author in PubMed Google Scholar

  14. Yvan de Launoit

    You can also search for this author in PubMed Google Scholar

  15. François Fuks

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to François Fuks.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This file contains technical details of experimental methods used in this study. (DOC 25 kb)

Supplementary Figure 1

GST pull-down mapping the interaction between DNMTs and EZH2. (PDF 3367 kb)

Supplementary Figure 2

EED and SUZ12 associate with DNA methyltransferase activity. (PDF 3610 kb)

Supplementary Figure 3

Validation of depletion of endogenous EZH2 or DNMTs by RNAi. (PDF 2998 kb)

Supplementary Figure 4

EZH2 or H3K27me3 binding to MYT1 does not require the presence of DNMTs. (PDF 3031 kb)

Supplementary Figure 5

CpG methylation status analysis of the EZH2-target promoters MYT1 and WNT1 in cells overexpressing EZH2. (PDF 4661 kb)

About this article

Cite this article

Viré, E., Brenner, C., Deplus, R. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006). https://doi.org/10.1038/nature04431

Download citation

  • Received: 06 October 2005

  • Accepted: 15 November 2005

  • Published: 14 December 2005

  • Issue Date: 16 February 2006

  • DOI: https://doi.org/10.1038/nature04431

Associated content