nature.com

Intellectual ability and cortical development in children and adolescents - Nature

  • ️Giedd, J.
  • ️Thu Mar 30 2006

References

  1. Spearman, C. 'General intelligence' objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904)

    Article  Google Scholar 

  2. Gottfredson, L. S. Why g matters: The complexity of everyday life. Intelligence 24, 79–132 (1997)

    Article  Google Scholar 

  3. Deary, I. J., Whalley, L. J., Lemmon, H., Crawford, J. R. & Starr, J. M. The stability of individual differences in mental ability from childhood to old age: Follow-up of the 1932 Scottish Mental Survey. Intelligence 28, 49–55 (2000)

    Article  Google Scholar 

  4. Booth, J. R. et al. Neural development of selective attention and response inhibition. Neuroimage 20, 737–751 (2003)

    Article  PubMed  Google Scholar 

  5. Sowell, E. R. et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McDaniel, M. Big-brained people are smarter. Intelligence 33, 337–346 (2005)

    Article  Google Scholar 

  7. Wilke, M., Sohn, J. H., Byars, A. W. & Holland, S. K. Bright spots: correlations of gray matter volume with IQ in a normal pediatric population. Neuroimage 20, 202–215 (2003)

    Article  PubMed  Google Scholar 

  8. Frangou, S., Chitins, X. & Williams, S. C. Mapping IQ and gray matter density in healthy young people. Neuroimage 23, 800–805 (2004)

    Article  PubMed  Google Scholar 

  9. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. Structural brain variation and general intelligence. Neuroimage 23, 425–433 (2004)

    Article  PubMed  Google Scholar 

  10. Kraemer, H. C., Yesavage, J. A., Taylor, J. L. & Kupfer, D. How can we learn about developmental processes from cross-sectional studies, or can we? Am. J. Psychiatry 157, 163–171 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci. 2, 861–863 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Wechsler, D. Manual for the Wechsler Intelligence Scale for Children—Revised (The Psychological Corporation, New York, 1974)

    Google Scholar 

  13. O'Donnell, S., Noseworthy, M. D., Levine, B. & Dennis, M. Cortical thickness of the frontopolar area in typically developing children and adolescents. Neuroimage 24, 948–954 (2005)

    Article  PubMed  Google Scholar 

  14. Kabani, N., Le Goualher, G., MacDonald, D. & Evans, A. C. Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13, 375–380 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Lerch, J. P. & Evans, A. C. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24, 163–173 (2005)

    Article  PubMed  Google Scholar 

  16. Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nature Neurosci. 6, 316–322 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kostovic, I., Judas, M., Rados, M. & Hrabac, P. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb. Cortex 12, 536–544 (2002)

    Article  PubMed  Google Scholar 

  19. Kostovic, I. & Rakic, P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 297, 441–470 (1990)

    Article  CAS  PubMed  Google Scholar 

  20. Yakovlev, P. I. & Lecours, A. R. in Regional Development of the Brain in Early Life (ed. Minokowski, A.) (Blackwell Scientific, Oxford, 1967)

    Google Scholar 

  21. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Chugani, H. T., Phelps, M. E. & Mazziotta, J. C. Positron emission tomography study of human brain functional development. Ann. Neurol. 22, 487–497 (1987)

    Article  CAS  PubMed  Google Scholar 

  24. Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Zijdenbos, A. P., Forghani, R. & Evans, A. C. Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans. Med. Imaging 21, 1280–1291 (2002)

    Article  PubMed  Google Scholar 

  27. MacDonald, D., Kabani, N., Avis, D. & Evans, A. C. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12, 340–356 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Pinheiro, J. C. & Bates, D. M. Mixed-effects Models in S and S-PLUS (Springer, New York, 2000)

    Book  Google Scholar 

  30. Genovese, C. R., Lazar, N. A. & Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 (2002)

    Article  PubMed  Google Scholar 

Download references