nature.com

Nuclear reprogramming and pluripotency - Nature

  • ️Jaenisch, Rudolf
  • ️Wed Jun 28 2006
  • Gurdon, J. B. & Byrne, J. A. The first half-century of nuclear transplantation. Proc. Natl Acad. Sci. USA 100, 8048–8052 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • Li, L., Connelly, M. C., Wetmore, C., Curran, T. & Morgan, J. I. Mouse embryos cloned from brain tumors. Cancer Res. 63, 2733–2736 (2003).

    CAS  PubMed  Google Scholar 

  • Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • Rideout, W. M., Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27 (2002).

    CAS  PubMed  Google Scholar 

  • Tamashiro, K. L. et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nature Med. 8, 262–267 (2002).

    CAS  PubMed  Google Scholar 

  • Ogonuki, N. et al. Early death of mice cloned from somatic cells. Nature Genet. 30, 253–254 (2002).

    CAS  PubMed  Google Scholar 

  • Briggs, R. & King, T. J. Changes in the nuclei of differentiating endoderm cells as revealed by nuclear transplantation. J. Morphol. 100, 269–311 (1957).

    Google Scholar 

  • Cheong, H. T., Takahashi, Y. & Kanagawa, H. Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol. Reprod. 48, 958–963 (1993).

    CAS  PubMed  Google Scholar 

  • Hiiragi, T. & Solter, D. Reprogramming is essential in nuclear transfer. Mol. Reprod. Dev. 70, 417–421 (2005).

    CAS  PubMed  Google Scholar 

  • Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl Acad. Sci. USA 98, 6209–6214 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rideout, W. M. et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nature Genet. 24, 109–110 (2000).

    CAS  PubMed  Google Scholar 

  • Wakayama, T. & Yanagimachi, R. Cloning of male mice from adult tail-tip cells. Nature Genet. 22, 127–128 (1999).

    CAS  PubMed  Google Scholar 

  • Ogura, A. et al. Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol. Reprod. 62, 1579–1584 (2000).

    CAS  PubMed  Google Scholar 

  • Inoue, K. et al. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr. Biol. 15, 1114–1118 (2005).

    CAS  PubMed  Google Scholar 

  • Blelloch, R. et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells published online 18 May 2006 (doi:10.1634/stemcells.2006-0050).

  • Inoue, K. et al. Inefficient reprogramming of the haematopoietic stem cell genome following nuclear transfer. J. Cell Sci. 119, 1985–1991 (2006).

    CAS  PubMed  Google Scholar 

  • Ng, R. K. & Gurdon, J. B. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl Acad. Sci. USA 102, 1957–1962 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohda, T. et al. Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biol. Reprod. 73, 1302–1311 (2005).

    CAS  PubMed  Google Scholar 

  • Humpherys, D. et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl Acad. Sci. USA 99, 12889–12894 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch, R. Human cloning — the science and ethics of nuclear transplantation. N. Engl. J. Med. 351, 2787–2791 (2004).

    CAS  PubMed  Google Scholar 

  • Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992 (2000).

    CAS  PubMed  Google Scholar 

  • Brambrink, T., Hochedlinger, K., Bell, G. & Jaenisch, R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl Acad. Sci. USA 103, 933–938 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cibelli, J. B. et al. Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. J. Regen. Med. 2, 25–31 (2001).

    Google Scholar 

  • Chen, Y. et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res. 13, 251–263 (2003).

    ADS  PubMed  Google Scholar 

  • Dey, R., Barrientos, A. & Moraes, C. T. Functional constraints of nuclear–mitochondrial DNA interactions in xenomitochondrial rodent cell lines. J. Biol. Chem. 275, 31520–31527 (2000).

    CAS  PubMed  Google Scholar 

  • Simerly, C. et al. Molecular correlates of primate nuclear transfer failures. Science 300, 297 (2003).

    PubMed  Google Scholar 

  • Simerly, C. et al. Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction. Dev. Biol. 276, 237–252 (2004).

    CAS  PubMed  Google Scholar 

  • Meng, L., Ely, J. J., Stouffer, R. L. & Wolf, D. P. Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57, 454–459 (1997).

    CAS  PubMed  Google Scholar 

  • Blau, H. M. & Blakely, B. T. Plasticity of cell fate: insights from heterokaryons. Semin. Cell Dev. Biol. 10, 267–272 (1999).

    CAS  PubMed  Google Scholar 

  • Miller, R. A. & Ruddle, F. H. Pluripotent teratocarcinoma–thymus somatic cell hybrids. Cell 9, 45–55 (1976).

    CAS  PubMed  Google Scholar 

  • Tada, M. et al. Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev. Dyn. 227, 504–510 (2003).

    CAS  PubMed  Google Scholar 

  • Tada, M., Tada, T., Lefebvre, L., Barton, S. C. & Surani, M. A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558 (2001).

    CAS  PubMed  Google Scholar 

  • Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • Yu, J., Vodyanik, M. A., He, P., Slukvin, I. I. & Thomson, J. A. Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion. Stem Cells 24, 168–176 (2005).

    PubMed  Google Scholar 

  • Rousset, J. P., Bucchini, D. & Jami, J. Hybrids between F9 nullipotent teratocarcinoma and thymus cells produce multidifferentiated tumors in mice. Dev. Biol. 96, 331–336 (1983).

    CAS  PubMed  Google Scholar 

  • Oshima, R. G., McKerrow, J. & Cox, D. Murine embryonal carcinoma hybrids: decreased ability to spontaneously differentiate as a dominant trait. J. Cell Physiol. 109, 195–204 (1981).

    CAS  PubMed  Google Scholar 

  • Do, J. T. & Scholer, H. R. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941–949 (2004).

    CAS  PubMed  Google Scholar 

  • Byrne, J. A., Simonsson, S., Western, P. S. & Gurdon, J. B. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13, 1206–1213 (2003).

    CAS  PubMed  Google Scholar 

  • Simonsson, S. & Gurdon, J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biol. 6, 984–990 (2004).

    CAS  PubMed  Google Scholar 

  • Kikyo, N., Wade, P. A., Guschin, D., Ge, H. & Wolffe, A. P. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289, 2360–2362 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • Hansis, C., Barreto, G., Maltry, N. & Niehrs, C. Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol. 14, 1475–1480 (2004).

    CAS  PubMed  Google Scholar 

  • Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y. & Mechali, M. Mitotic remodeling of the replicon and chromosome structure. Cell 123, 787–801 (2005).

    CAS  PubMed  Google Scholar 

  • Gurdon, J. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640 (1962).

    CAS  PubMed  Google Scholar 

  • Taranger, C. K. et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell 16, 5719–5735 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hakelien, A. M., Landsverk, H. B., Robl, J. M., Skalhegg, B. S. & Collas, P. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nature Biotechnol. 20, 460–466 (2002).

    CAS  Google Scholar 

  • Raff, M. Adult stem cell plasticity: fact or artifact? Annu. Rev. Cell Dev. Biol. 19, 1–22 (2003).

    CAS  PubMed  Google Scholar 

  • Andrews, P. W. From teratocarcinomas to embryonic stem cells. Phil. Trans. R. Soc. Lond. B 357, 405–417 (2002).

    Google Scholar 

  • Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    ADS  CAS  PubMed  Google Scholar 

  • Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    CAS  PubMed  Google Scholar 

  • Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551 (1992).

    ADS  CAS  PubMed  Google Scholar 

  • Labosky, P. A., Barlow, D. P. & Hogan, B. L. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 3197–3204 (1994).

    CAS  PubMed  Google Scholar 

  • Tada, T. et al. Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Genes Evol. 207, 551–561 (1998).

    CAS  PubMed  Google Scholar 

  • Rossant, J. & McBurney, M. W. The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. J. Embryol. Exp. Morphol. 70, 99–112 (1982).

    CAS  PubMed  Google Scholar 

  • Blelloch, R. H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl Acad. Sci. USA 101, 13985–13990 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, C. L., Gadi, I. & Bhatt, H. Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628 (1994).

    CAS  PubMed  Google Scholar 

  • Stewart, T. A. & Mintz, B. Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo. J. Exp. Zool. 224, 465–469 (1982).

    CAS  PubMed  Google Scholar 

  • Durcova-Hills, G., Adams, I. R., Barton, S. C., Surani, M. A. & McLaren, A. The role of exogenous FGF-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells (in the press).

  • Kehler, J. et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    CAS  PubMed  Google Scholar 

  • Chung, Y. et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439, 216–219 (2005).

    ADS  PubMed  Google Scholar 

  • Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004).

    CAS  PubMed  Google Scholar 

  • Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • Zwaka, T. P. & Thomson, J. A. A germ cell origin of embryonic stem cells? Development 132, 227–233 (2005).

    CAS  PubMed  Google Scholar 

  • Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • Kogler, G. et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200, 123–135 (2004).

    PubMed  PubMed Central  Google Scholar 

  • Snow, M. H. L. Gastrulation in the mouse: growth and regionalization of the epiblast. J. Embryol. Exp. Morphol. 42, 293–303 (1977).

    Google Scholar 

  • Yamazaki, Y. et al. Adult mice cloned from migrating primordial germ cells. Proc. Natl Acad. Sci. USA 102, 11361–11366 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23 (2002).

    CAS  PubMed  Google Scholar 

  • Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807–1817 (2002).

    CAS  PubMed  Google Scholar 

  • Hernandez, L., Kozlov, S., Piras, G. & Stewart, C. L. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc. Natl Acad. Sci. USA 100, 13344–13349 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm, T. M. et al. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8, 275–285 (2005).

    CAS  PubMed  Google Scholar 

  • Chambers, I. & Smith, A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23, 7150–7160 (2004).

    CAS  PubMed  Google Scholar 

  • Li, X., Kato, Y. & Tsunoda, Y. Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential. Mol. Reprod. Dev. 72, 152–160 (2005).

    CAS  PubMed  Google Scholar 

  • Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680 (2003).

    CAS  PubMed  Google Scholar 

  • Boiani, M., Eckardt, S., Scholer, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    CAS  PubMed  Google Scholar 

  • Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    CAS  PubMed  Google Scholar 

  • Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • Bernstein, B. E. et al. Epigenetic landscape in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  • Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    CAS  PubMed  Google Scholar 

  • Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • Baba, Y., Garrett, K. P. & Kincade, P. W. Constitutively active β-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity 23, 599–609 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277 (2002).

    CAS  PubMed  Google Scholar 

  • Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    CAS  PubMed  Google Scholar 

  • Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    CAS  PubMed  Google Scholar 

  • Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    CAS  PubMed  Google Scholar 

  • Wakayama, S. et al. Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol. Reprod. 72, 932–936 (2005).

    CAS  PubMed  Google Scholar 

  • Kennedy, D. Editorial retraction. Science 311, 335 (2006).

    CAS  PubMed  Google Scholar 

  • Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    ADS  PubMed  Google Scholar 

  • Lacham-Kaplan, O., Chy, H. & Trounson, A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells 24, 266–273 (2006).

    PubMed  Google Scholar