nature.com

Atomic structures of amyloid cross-β spines reveal varied steric zippers - Nature

  • ️Eisenberg, David
  • ️Sun Apr 29 2007
  • Westermark, P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 272, 5942–5949 (2005)

    Article  CAS  Google Scholar 

  • Westermark, P. et al. Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 12, 1–4 (2005)

    Article  CAS  Google Scholar 

  • Cohen, A. S. & Calkins, E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183, 1202–1203 (1959)

    Article  ADS  CAS  Google Scholar 

  • Rochet, J. C. & Lansbury, P. T. Jr. Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10, 60–68 (2000)

    Article  CAS  Google Scholar 

  • Astbury, W. T., Dickinson, S. & Bailey, K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J. 29, 2351–2360 (1935)

    Article  CAS  Google Scholar 

  • Geddes, A. J., Parker, K. D., Atkins, E. D. & Beighton, E. “Cross-β” conformation in proteins. J. Mol. Biol. 32, 343–358 (1968)

    Article  CAS  Google Scholar 

  • Sunde, M. & Blake, C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem. 50, 123–159 (1997)

    Article  CAS  Google Scholar 

  • Eanes, E. D. & Glenner, G. G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16, 673–677 (1968)

    Article  CAS  Google Scholar 

  • Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997)

    Article  CAS  Google Scholar 

  • Ritter, C. et al. Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848 (2005)

    Article  ADS  CAS  Google Scholar 

  • Sikorski, P. & Atkins, E. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6, 425–432 (2005)

    Article  CAS  Google Scholar 

  • Petkova, A. T. et al. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl Acad. Sci. USA 99, 16742–16747 (2002)

    Article  ADS  CAS  Google Scholar 

  • Jaroniec, C. P. et al. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl Acad. Sci. USA 101, 711–716 (2004)

    Article  ADS  CAS  Google Scholar 

  • Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005)

    Article  ADS  CAS  Google Scholar 

  • Makin, O. S. & Serpell, L. C. Structures for amyloid fibrils. FEBS J. 272, 5950–5961 (2005)

    Article  CAS  Google Scholar 

  • Lührs, T. et al. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005)

    Article  ADS  Google Scholar 

  • Török, M. et al. Structural and dynamic features of Alzheimer’s Aβ peptide in amyloid fibrils studied by site-directed spin labeling. J. Biol. Chem. 277, 40810–40815 (2002)

    Article  Google Scholar 

  • Paravastu, A. K., Petkova, A. T. & Tycko, R. Polymorphic fibril formation by residues 10–40 of the Alzheimer’s β-amyloid peptide. Biophys. J. 90, 4618–4629 (2006)

    Article  ADS  CAS  Google Scholar 

  • Williams, A. D. et al. Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842 (2004)

    Article  CAS  Google Scholar 

  • Kheterpal, I., Zhou, S., Cook, K. D. & Wetzel, R. Aβ amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc. Natl Acad. Sci. USA 97, 13597–13601 (2000)

    Article  ADS  CAS  Google Scholar 

  • Ferguson, N. et al. General structural motifs of amyloid protofilaments. Proc. Natl Acad. Sci. USA 103, 16248–16253 (2006)

    Article  ADS  CAS  Google Scholar 

  • Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005)

    Article  ADS  CAS  Google Scholar 

  • Balbirnie, M., Grothe, R. & Eisenberg, D. S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. Proc. Natl Acad. Sci. USA 98, 2375–2380 (2001)

    Article  ADS  CAS  Google Scholar 

  • Diaz-Avalos, R. et al. Cross-β order and diversity in nanocrystals of an amyloid-forming peptide. J. Mol. Biol. 330, 1165–1175 (2003)

    Article  CAS  Google Scholar 

  • Baxa, U. et al. Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J. Biol. Chem. 278, 43717–43727 (2003)

    Article  CAS  Google Scholar 

  • Sambashivan, S., Liu, Y., Sawaya, M. R., Gingery, M. & Eisenberg, D. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266–269 (2005)

    Article  ADS  CAS  Google Scholar 

  • Thompson, M. J. et al. The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl Acad. Sci. USA 103, 4074–4078 (2006)

    Article  ADS  CAS  Google Scholar 

  • Ivanova, M. I., Sawaya, M. R., Gingery, M., Attinger, A. & Eisenberg, D. An amyloid-forming segment of β2-microglobulin suggests a molecular model for the fibril. Proc. Natl Acad. Sci. USA 101, 10584–10589 (2004)

    Article  ADS  CAS  Google Scholar 

  • Ivanova, M. I., Thompson, M. J. & Eisenberg, D. A systematic screen of β2-microglobulin and insulin for amyloid-like segments. Proc. Natl Acad. Sci. USA 103, 4079–4082 (2006)

    Article  ADS  CAS  Google Scholar 

  • Fändrich, M. & Dobson, C. M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 21, 5682–5690 (2002)

    Article  Google Scholar 

  • Harper, J. D. & Lansbury, P. T. Jr. Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997)

    Article  CAS  Google Scholar 

  • Jarrett, J. T. & Lansbury, P. T. Jr. Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 31, 12345–12352 (1992)

    Article  CAS  Google Scholar 

  • Sikorski, P., Atkins, E. D. & Serpell, L. C. Structure and texture of fibrous crystals formed by Alzheimer’s Aβ(11–25) peptide fragment. Structure (Camb.) 11, 915–926 (2003)

    Article  CAS  Google Scholar 

  • Makin, O. S., Atkins, E., Sikorski, P., Johansson, J. & Serpell, L. C. Molecular basis for amyloid fibril formation and stability. Proc. Natl Acad. Sci. USA 102, 315–320 (2005)

    Article  ADS  CAS  Google Scholar 

  • Halverson, K., Fraser, P. E., Kirschner, D. A. & Lansbury, P. T. Jr. Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic β-protein fragments. Biochemistry 29, 2639–2644 (1990)

    Article  CAS  Google Scholar 

  • Serpell, L. C. & Smith, J. M. Direct visualisation of the β-sheet structure of synthetic Alzheimer’s amyloid. J. Mol. Biol. 299, 225–231 (2000)

    Article  CAS  Google Scholar 

  • Kajava, A. V., Baxa, U., Wickner, R. B. & Steven, A. C. A model for Ure2p prion filaments and other amyloids: the parallel superpleated β-structure. Proc. Natl Acad. Sci. USA 101, 7885–7890 (2004)

    Article  ADS  CAS  Google Scholar 

  • Kajava, A. V., Aebi, U. & Steven, A. C. The parallel superpleated β-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 348, 247–252 (2005)

    Article  CAS  Google Scholar 

  • King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004)

    Article  ADS  CAS  Google Scholar 

  • Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004)

    Article  ADS  CAS  Google Scholar 

  • Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307, 262–265 (2005)

    Article  ADS  CAS  Google Scholar 

  • Chien, P. & Weissman, J. S. Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410, 223–227 (2001)

    Article  ADS  CAS  Google Scholar 

  • Jones, E. M. & Surewicz, W. K. Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell 121, 63–72 (2005)

    Article  CAS  Google Scholar 

  • Diaz-Avalos, R., King, C. Y., Wall, J., Simon, M. & Caspar, D. L. Strain-specific morphologies of yeast prion amyloid fibrils. Proc. Natl Acad. Sci. USA 102, 10165–10170 (2005)

    Article  ADS  CAS  Google Scholar 

  • Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006)

    Article  ADS  CAS  Google Scholar 

  • Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993)

    Article  CAS  Google Scholar