nature.com

Localization and functionality of microsporidian iron–sulphur cluster assembly proteins - Nature

  • ️Embley, T. Martin
  • ️Sun Mar 02 2008

References

  1. Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002)

    Article  CAS  Google Scholar 

  2. Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi . Nature 414, 450–453 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Burri, L., Williams, B. A., Bursac, D., Lithgow, T. & Keeling, P. J. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc. Natl Acad. Sci. USA 103, 15916–15920 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Williams, B. A., Hirt, R. P., Lucocq, J. M. & Embley, T. M. A mitochondrial remnant in the microsporidian Trachipleistophora hominis . Nature 418, 865–869 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Lill, R. & Kispal, G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem. Sci. 25, 352–356 (2000)

    Article  CAS  Google Scholar 

  7. Kispal, G. et al. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J. 24, 589–598 (2005)

    Article  CAS  Google Scholar 

  8. Wiedemann, N. et al. Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. EMBO J. 25, 184–195 (2006)

    Article  CAS  Google Scholar 

  9. Lill, R. & Muhlenhoff, U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu. Rev. Cell Dev. Biol. 22, 457–486 (2006)

    Article  CAS  Google Scholar 

  10. Emelyanov, V. V. Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiol. Lett. 226, 257–266 (2003)

    Article  CAS  Google Scholar 

  11. Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426, 172–176 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Molik, S., Lill, R. & Muhlenhoff, U. Methods for studying iron metabolism in yeast mitochondria. Methods Cell Biol. 80, 261–280 (2007)

    Article  CAS  Google Scholar 

  13. Guda, C., Fahy, E. & Subramaniam, S. MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins. Bioinformatics 20, 1785–1794 (2004)

    Article  CAS  Google Scholar 

  14. Gerber, J., Neumann, K., Prohl, C., Muhlenhoff, U. & Lill, R. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe–S proteins. Mol. Cell. Biol. 24, 4848–4857 (2004)

    Article  CAS  Google Scholar 

  15. Muhlenhoff, U., Gerber, J., Richhardt, N. & Lill, R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815–4825 (2003)

    Article  Google Scholar 

  16. Dutkiewicz, R. et al. The Hsp70 chaperone Ssq1p is dispensable for iron-sulfur cluster formation on the scaffold protein Isu1p. J. Biol. Chem. 281, 7801–7808 (2006)

    Article  CAS  Google Scholar 

  17. Netz, D. J., Pierik, A. J., Stumpfig, M., Muhlenhoff, U. & Lill, R. The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nature Chem. Biol. 3, 278–286 (2007)

    Article  CAS  Google Scholar 

  18. Abrahamsen, M. S. et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum . Science 304, 441–445 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Loftus, B. et al. The genome of the protist parasite Entamoeba histolytica . Nature 433, 865–868 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Carlton, J. M. et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis . Science 315, 207–212 (2007)

    Article  ADS  Google Scholar 

  21. Ali, V., Shigeta, Y., Tokumoto, U., Takahashi, Y. & Nozaki, T. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J. Biol. Chem. 279, 16863–16874 (2004)

    Article  CAS  Google Scholar 

  22. Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005)

    Article  CAS  Google Scholar 

  23. Rouault, T. A. & Tong, W. H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nature Rev. Mol. Cell Biol. 6, 345–351 (2005)

    Article  CAS  Google Scholar 

  24. Balk, J. & Lobreaux, S. Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci. 10, 324–331 (2005)

    Article  CAS  Google Scholar 

  25. Sutak, R. et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis . Proc. Natl Acad. Sci. USA 101, 10368–10373 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Vavra, J. “Polar vesicles” of microsporidia are mitochondrial remnants (“mitosomes”)? Folia Parasitol. (Praha) 52, 193–195 (2005)

    Article  Google Scholar 

  27. Muhlenhoff, U. et al. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae . J. Biol. Chem. 279, 36906–36915 (2004)

    Article  Google Scholar 

  28. Muhlenhoff, U., Richhardt, N., Ristow, M., Kispal, G. & Lill, R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe–S proteins. Hum. Mol. Genet. 11, 2025–2036 (2002)

    Article  Google Scholar 

  29. Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995)

    Article  CAS  Google Scholar 

  30. Taupin, V., Metenier, G., Vivares, C. P. & Prensier, G. An improved procedure for percoll gradient separation of sporogonial stages in Encephalitozoon cuniculi (Microsporidia). Parasitol. Res. 99, 708–714 (2006)

    Article  Google Scholar 

Download references