nature.com

Genetic basis of fitness differences in natural populations - Nature

  • ️Sheldon, Ben C.
  • ️Thu Mar 13 2008
  • Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006)

    Article  CAS  ADS  Google Scholar 

  • Rice, W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232–234 (1996)

    Article  CAS  ADS  Google Scholar 

  • Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA 98, 1671–1675 (2001)

    Article  CAS  ADS  Google Scholar 

  • Fedorka, K. M. & Mousseau, T. A. Female mating bias results in conflicting sex-specific offspring fitness. Nature 429, 65–67 (2004)

    Article  CAS  ADS  Google Scholar 

  • Foerster, K. et al. Sexually antagonistic genetic variation for fitness in red deer. Nature 447, 1107–1110 (2007)

    Article  CAS  ADS  Google Scholar 

  • Wilson, A. J. et al. Environmental coupling of selection and heritability limits evolution. PLoS Biol. 4, e216 (2006)

    Article  CAS  Google Scholar 

  • Kruuk, L. E. B. et al. Antler size in red deer: heritability and selection but no evolution. Evol. Int. J. Org. Evol. 56, 1683–1695 (2002)

    Article  CAS  Google Scholar 

  • Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296, 707–711 (2002)

    Article  CAS  ADS  Google Scholar 

  • Garant, D., Kruuk, L. E. B., McCleery, R. H. & Sheldon, B. C. Evolution in a changing environment: a case study with great tit fledging mass. Am. Nat. 164, 115–129 (2004)

    Article  Google Scholar 

  • Knapczyk, F. N. & Conner, J. K. Estimates of the average strength of selection are not inflated by sampling error or publication bias. Am. Nat. 170, 501–508 (2007)

    Article  Google Scholar 

  • Kruuk, L. E. B. Estimating genetic parameters in natural populations using the “animal model”. Phil. Trans. R. Soc. Lond. B 359, 873–890 (2004)

    Article  Google Scholar 

  • Kruuk, L. E. B. et al. Heritability of fitness in a wild mammal population. Proc. Natl Acad. Sci. USA 97, 698–703 (2000)

    Article  CAS  ADS  Google Scholar 

  • Pelletier, F., Clutton-Brock, T. H., Pemberton, J. M., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: linking trait variation and population growth. Science 315, 1571–1574 (2007)

    Article  CAS  ADS  Google Scholar 

  • Charmantier, A., Perrins, C., McCleery, R. H. & Sheldon, B. C. Quantitative genetics of age at reproduction in wild swans: support for antagonistic pleiotropy models of senescence. Proc. Natl Acad. Sci. USA 103, 6587–6592 (2006)

    Article  CAS  ADS  Google Scholar 

  • Conover, D. O. & Schultz, E. T. Phenotypic similarity and the evolutionary significance of counter-gradient variation. Trends Ecol. Evol. 10, 248–252 (1995)

    Article  CAS  Google Scholar 

  • Laugen, A. T. et al. Latitudinal countergradient variation in the common frog (Rana temporaria) development rates—evidence for local adaptation. J. Evol. Biol. 16, 996–1005 (2003)

    Article  CAS  Google Scholar 

  • Merila, J., Kruuk, L. E. B. & Sheldon, B. C. Cryptic evolution in a wild bird population. Nature 412, 76–79 (2001)

    Article  CAS  ADS  Google Scholar 

  • Garant, D., Kruuk, L. E. B., Wilkin, T. A., McCleery, R. H. & Sheldon, B. C. Evolution driven by differential dispersal within a wild bird population. Nature 433, 60–65 (2005)

    Article  CAS  ADS  Google Scholar 

  • Wilson, A. J. et al. Quantitative genetics of growth and cryptic evolution of body size in an island population. Evol. Ecol. 21, 337–356 (2007)

    Article  Google Scholar 

  • Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evol. Int. J. Org. Evol. 61, 995–1016 (2007)

    Article  Google Scholar 

  • King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975)

    Article  CAS  ADS  Google Scholar 

  • Carroll, S. B. Endless Forms Most Beautiful: the New Science of Evo-Devo (W. W. Norton & Co., New York, 2005)

    Google Scholar 

  • Prud'homme, B. et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440, 1050–1053 (2006)

    Article  CAS  ADS  Google Scholar 

  • Borneman, A. R. et al. Divergence of transcription factor binding sites across related yeast species. Science 317, 815–819 (2007)

    Article  CAS  ADS  Google Scholar 

  • McGregor, A. P. et al. Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448, 587–590 (2007)

    Article  CAS  ADS  Google Scholar 

  • ffrench-Constant, R. H., Rocheleau, T. A., Steichen, J. C. & Chalmers, A. E. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363, 448–451 (1993)

    Article  ADS  Google Scholar 

  • Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005)

    Article  CAS  ADS  Google Scholar 

  • Vera, J. C. et al. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol. Ecol. advance online publication, doi: 10.1111/j.1365-294x.2008.03666.x (5 February 2008)

  • Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nature Rev. Genet. 8, 845–856 (2007)

    Article  CAS  Google Scholar 

  • Williams, J. T. & Blangero, J. Power of variance component linkage analysis to detect quantitative trait loci. Ann. Hum. Genet. 63, 545–563 (1999)

    Article  CAS  Google Scholar 

  • Barton, N. H. & Keightly, P. D. Understanding quantitative genetic variation. Nature Rev. Genet. 3, 11–21 (2002)

    Article  CAS  Google Scholar 

  • Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998)

    Google Scholar 

  • Slate, J. et al. A genome scan for quantitative trait loci in a wild populations of red deer (Cervus elaphus). Genetics 162, 1863–1873 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beraldi, D. et al. Mapping quantitative trait loci underlying fitness-related traits in a free-living sheep population. Evol. Int. J. Org. Evol. 61, 1403–1416 (2007)

    Article  Google Scholar 

  • Colosimo, P. F. et al. The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol. 2, e109 (2004)

    Article  Google Scholar 

  • Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005)

    Article  CAS  ADS  Google Scholar 

  • Backström, N., Qvarnstrom, A., Gustafsson, L. & Ellegren, H. Levels of linkage disequilibrium in a wild bird population. Biol. Lett. 2, 435–438 (2006)

    Article  Google Scholar 

  • Slate, J. & Pemberton, J. M. Admixture and patterns of linkage disequilibrium in a free-living vertebrate population. J. Evol. Biol. 20, 1415–1427 (2007)

    Article  CAS  Google Scholar 

  • Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2006)

    Article  CAS  Google Scholar 

  • Williamson, S. et al. Localizing recent adaptive evolution in the human genome. PloS Genet. 3, e90 (2007)

    Article  Google Scholar 

  • Pennings, P. S. & Hermisson, J. Soft sweeps. III: The signature of positive selection from recurrent mutation. PloS Genet. 2, e186 (2006)

    Article  Google Scholar 

  • Teshima, K. M., Coop, G. & Preworski, M. How reliable are empirical genomic scans for selective sweeps? Genome Res. 16, 702–712 (2006)

    Article  CAS  Google Scholar 

  • Beaumont, M. A. Adaptation and speciation: what can F ST tell us? Trends Ecol. Evol. 20, 435–440 (2005)

    Article  Google Scholar 

  • Storz, J. F. Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol. Ecol. 14, 671–688 (2005)

    Article  CAS  Google Scholar 

  • Luikart, G., England, P. R., Tallman, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nature Rev. Genet. 4, 981–993 (2003)

    Article  CAS  Google Scholar 

  • Campbell, D. & Bernatchez, L. Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol. Biol. Evol. 21, 945–956 (2004)

    Article  CAS  Google Scholar 

  • Bonin, A. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol. Ecol. 23, 773–783 (2006)

    CAS  Google Scholar 

  • Rogers, S. M. & Bernatchez, L. Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol. Ecol. 14, 351–361 (2005)

    Article  CAS  Google Scholar 

  • Lin, J. Y. & Fisher, D. E. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007)

    Article  CAS  ADS  Google Scholar 

  • Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104 (2006)

    Article  CAS  ADS  Google Scholar 

  • Rosenblum, E. B., Hoekstra, H. E. & Nachman, M. W. Adaptive reptile color variation and the evolution of the MC1R gene. Evolution Int. J. Org. Evolution 58, 1794–1808 (2004)

    CAS  Google Scholar 

  • Mundy, N. I. et al. Conserved genetics basis of a quantitative plumage trait involved in mate choice. Science 303, 1870–1873 (2004)

    Article  CAS  ADS  Google Scholar 

  • Steiner, C. C., Weber, J. N. & Hoekstra, H. E. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol. 5, e239 (2007)

    Article  Google Scholar 

  • Miller, C. T. et al. cis-regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131, 1179–1189 (2007)

    Article  CAS  Google Scholar 

  • Protas, M. E. et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genet. 38, 107–111 (2006)

    Article  CAS  Google Scholar 

  • Dahlhoff, E. P. & Rank, N. E. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: Heat shock protein expression is related to enzyme genotype in a montane beetle. Proc. Natl Acad. Sci. USA 97, 10056–10061 (2000)

    Article  CAS  ADS  Google Scholar 

  • Haag, C. R., Saastamoinen, M., Marden, J. H. & Hanski, I. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc. Biol. Sci. 272, 2449–2456 (2005)

    Article  Google Scholar 

  • Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: raw material for evolution. Mol. Ecol. 15, 1197–1211 (2006)

    Article  CAS  Google Scholar 

  • Derome, N. & Bernatchez, L. The transcriptomics of ecological convergence between two limnetic coregonine fishes (Salmonidae). Mol. Biol. Evol. 23, 2370–2378 (2006)

    Article  CAS  Google Scholar 

  • Gilad, Y., Oshlack, A. & Rifkin, S. A. Natural selection on gene expression. Trends Genet. 22, 456–461 (2006)

    Article  CAS  Google Scholar 

  • Gibson, G. & Weir, B. The quantitative genetics of transcription. Trends Genet. 21, 616–623 (2005)

    Article  CAS  Google Scholar 

  • Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nature Rev. Genet. 8, 689–698 (2007)

    Article  CAS  Google Scholar 

  • Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005)

    Article  CAS  ADS  Google Scholar 

  • Charmantier, A. & Sheldon, B. C. Testing genetic models of mate choice evolution in the wild. Trends Ecol. Evol. 21, 417–419 (2006)

    Article  Google Scholar 

  • Frank, S. A. George Price's contributions to evolutionary genetics. J. Theor. Biol. 175, 373–388 (1995)

    Article  CAS  Google Scholar 

  • Lande, R. A quantitative genetic theory of life history evolution. Ecology 63, 607–615 (1982)

    Article  Google Scholar 

  • Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution Int. J. Org. Evolution 37, 1210–1226 (1983)

    Article  Google Scholar 

  • Metcalf, C. J. E. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007)

    Article  Google Scholar 

  • Coulson, T. et al. Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proc. R. Soc. Lond. Ser. B 273, 547–555 (2006)

    Article  CAS  Google Scholar 

  • Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, Oxford, 1930)

    Book  Google Scholar 

  • Price, G. R. Fisher's ‘fundamental theorem’ made clear. Ann. Hum. Genet. 36, 129–140 (1972)

    Article  CAS  MathSciNet  Google Scholar 

  • Schneider, R. A. & Helms, J. A. The cellular and molecular origins of beak morphology. Science 299, 565–568 (2003)

    Article  CAS  ADS  Google Scholar 

  • Abzhanov, A. et al. Bmp4 and morphological variation of beaks in Darwin's finches. Science 305, 1462–1465 (2004)

    Article  CAS  ADS  Google Scholar 

  • Abzhanov, A. et al. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442, 563–567 (2006)

    Article  CAS  ADS  Google Scholar