nature.com

Tracing the stepwise oxygenation of the Proterozoic ocean - Nature

  • ️Anbar, A. D.
  • ️Thu Mar 27 2008

References

  1. Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996)

    Article  CAS  ADS  Google Scholar 

  2. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    Article  CAS  ADS  Google Scholar 

  3. Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003)

    Article  CAS  ADS  Google Scholar 

  4. Rouxel, O. J., Bekker, A. & Edwards, K. J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307, 1088–1091 (2005)

    Article  CAS  ADS  Google Scholar 

  5. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007)

    Article  CAS  ADS  Google Scholar 

  6. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006)

    Article  CAS  ADS  Google Scholar 

  7. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007)

    Article  CAS  ADS  Google Scholar 

  8. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    Article  CAS  ADS  Google Scholar 

  9. Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173–177 (2004)

    Article  CAS  ADS  Google Scholar 

  10. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297, 1137–1142 (2002)

    Article  CAS  ADS  Google Scholar 

  11. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, Princeton NJ, 1984)

    Google Scholar 

  12. Shen, Y., Canfield, D. E. & Knoll, A. H. Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia. Am. J. Sci. 302, 81–109 (2002)

    Article  CAS  ADS  Google Scholar 

  13. Shen, Y., Knoll, A. H. & Walter, M. R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003)

    Article  CAS  ADS  Google Scholar 

  14. Arnold, G. L., Anbar, A. D., Barling, J. & Lyons, T. W. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science 304, 87–90 (2004)

    Article  CAS  ADS  Google Scholar 

  15. Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature 437, 866–870 (2005)

    Article  CAS  ADS  Google Scholar 

  16. Slack, J. F., Grenne, T., Bekker, A., Rouxel, O. J. & Lindberg, P. A. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255, 243–256 (2007)

    Article  CAS  ADS  Google Scholar 

  17. Algeo, T. J. & Lyons, T. W. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, doi:10.1029/2004PA001112 (2006)

  18. Bertine, K. K. & Turekian, K. K. Molybdenum in marine deposits. Geochim. Cosmochim. Acta 37, 1415–1434 (1973)

    Article  CAS  ADS  Google Scholar 

  19. Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995)

    Article  ADS  Google Scholar 

  20. Helz, G. R. et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–3642 (1996)

    Article  CAS  ADS  Google Scholar 

  21. Lyons, T. W. & Berner, R. B. Carbon–sulfur–iron systematics of the upper-most deep-water sediments of the Black Sea. Chem. Geol. 99, 1–27 (1992)

    Article  CAS  ADS  Google Scholar 

  22. Lyons, T. W., Werne, J. P., Hollander, D. J. & Murray, R. W. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem. Geol. 195, 131–157 (2003)

    Article  CAS  ADS  Google Scholar 

  23. Emerson, S. R. & Huested, S. S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 34, 177–196 (1991)

    Article  CAS  Google Scholar 

  24. Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006)

    Article  CAS  ADS  Google Scholar 

  25. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)

    Article  CAS  Google Scholar 

  26. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007)

    Article  CAS  ADS  Google Scholar 

  27. Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J. & Holland, H. D. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 225, 43–52 (2004)

    Article  CAS  ADS  Google Scholar 

  28. Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004)

    Article  CAS  ADS  Google Scholar 

  29. Zerkle, A. L., House, C. H., Cox, R. P. & Canfield, D. E. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4, 285–297 (2006)

    Article  CAS  Google Scholar 

  30. Lyons, T. W., Luepke, J. J., Schreiber, M. E. & Zieg, G. A. Sulfur geochemical constraints on Mesoproterozic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochim. Cosmochim. Acta 64, 427–437 (2000)

    Article  CAS  ADS  Google Scholar 

  31. Raiswell, R., Buckley, F., Berner, R. A. & Anderson, T. F. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sedim. Res. 58, 812–819 (1988)

    CAS  Google Scholar 

  32. Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986)

    Article  CAS  ADS  Google Scholar 

Download references