nature.com

HP1-β mobilization promotes chromatin changes that initiate the DNA damage response - Nature

  • ️Venkitaraman, Ashok R.
  • ️Sun Apr 27 2008

References

  1. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998)

    Article  CAS  Google Scholar 

  2. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair (Amst.) 3, 959–967 (2004)

    Article  CAS  Google Scholar 

  3. Lowndes, N. F. & Toh, G. W. DNA repair: the importance of phosphorylating histone H2AX. Curr. Biol. 15, R99–R102 (2005)

    Article  CAS  Google Scholar 

  4. Allende-Vega, N., Dias, S., Milne, D. & Meek, D. Phosphorylation of the acidic domain of Mdm2 by protein kinase CK2. Mol. Cell. Biochem. 274, 85–90 (2005)

    Article  CAS  Google Scholar 

  5. Cheung, W. L. et al. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr. Biol. 15, 656–660 (2005)

    Article  CAS  Google Scholar 

  6. Loizou, J. I. et al. The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117, 17–28 (2004)

    Article  CAS  Google Scholar 

  7. Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary Mammalian cells. Science 299, 719–721 (2003)

    Article  CAS  ADS  Google Scholar 

  8. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003)

    Article  CAS  ADS  Google Scholar 

  9. Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G. & Hemmerich, P. High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell 15, 2819–2833 (2004)

    Article  CAS  Google Scholar 

  10. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol. 5, 255–260 (2003)

    Article  CAS  Google Scholar 

  11. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999)

    Article  CAS  Google Scholar 

  12. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006)

    Article  CAS  Google Scholar 

  13. Kuo, M. H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269–272 (1996)

    Article  CAS  ADS  Google Scholar 

  14. Zhao, T. & Eissenberg, J. C. Phosphorylation of heterochromatin protein 1 by casein kinase II is required for efficient heterochromatin binding in Drosophila. J. Biol. Chem. 274, 15095–15100 (1999)

    Article  CAS  Google Scholar 

  15. Zhao, T., Heyduk, T. & Eissenberg, J. C. Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity. J. Biol. Chem. 276, 9512–9518 (2001)

    Article  CAS  Google Scholar 

  16. Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002)

    Article  CAS  ADS  Google Scholar 

  17. Formby, B. & Stern, R. Phosphorylation stabilizes alternatively spliced CD44 mRNA transcripts in breast cancer cells: inhibition by antisense complementary to casein kinase II mRNA. Mol. Cell. Biochem. 187, 23–31 (1998)

    Article  CAS  Google Scholar 

  18. Ruzzene, M., Penzo, D. & Pinna, L. A. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem. J. 364, 41–47 (2002)

    Article  CAS  Google Scholar 

  19. Canton, D. A., Zhang, C. & Litchfield, D. W. Assembly of protein kinase CK2: investigation of complex formation between catalytic and regulatory subunits using a zinc-finger-deficient mutant of CK2β. Biochem. J. 358, 87–94 (2001)

    Article  CAS  Google Scholar 

  20. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003)

    Article  CAS  ADS  Google Scholar 

  21. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biol. 8, 870–876 (2006)

    Article  CAS  Google Scholar 

  22. Kim, J.-A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J. E. Heterochromatin is refractory to γH2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 (2007)

    Article  CAS  Google Scholar 

  23. Cowell, I. G. et al. γH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2, e1057 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007)

    Article  CAS  ADS  Google Scholar 

  25. Lomberk, G., Bensi, D., Fernandez-Zapico, M. E. & Urrutia, R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nature Cell Biol. 8, 407–415 (2006)

    Article  CAS  Google Scholar 

  26. Daniels, M. J., Marson, A. & Venkitaraman, A. R. PML bodies control the nuclear dynamics and function of the CHFR mitotic checkpoint protein. Nature Struct. Mol. Biol. 11, 1114–1121 (2004)

    Article  CAS  Google Scholar 

  27. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999)

    Article  CAS  Google Scholar 

Download references