nature.com

PML targeting eradicates quiescent leukaemia-initiating cells - Nature

  • ️Pandolfi, Pier Paolo
  • ️Sun May 11 2008
  • Bruce, W. R. & van der Gaag, H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199, 79–80 (1963)

    Article  ADS  CAS  Google Scholar 

  • Huntly, B. J. & Gilliland, D. G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Rev. Cancer 5, 311–321 (2005)

    Article  CAS  Google Scholar 

  • Scadden, D. T. Cancer stem cells refined. Nature Immunol. 5, 701–703 (2004)

    Article  CAS  Google Scholar 

  • Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    Article  ADS  CAS  Google Scholar 

  • Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol. 5, 738–743 (2004)

    Article  CAS  Google Scholar 

  • Holtz, M., Forman, S. J. & Bhatia, R. Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after imatinib treatment. Cancer Res. 67, 1113–1120 (2007)

    Article  CAS  Google Scholar 

  • Wang, J. C. & Dick, J. E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005)

    Article  CAS  Google Scholar 

  • Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973)

    Article  ADS  CAS  Google Scholar 

  • de Klein, A. et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767 (1982)

    Article  ADS  CAS  Google Scholar 

  • Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000)

    CAS  PubMed  Google Scholar 

  • Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001)

    Article  CAS  Google Scholar 

  • Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002)

    Article  CAS  Google Scholar 

  • Rousselot, P. et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109, 58–60 (2007)

    Article  CAS  Google Scholar 

  • Ghanima, W., Kahrs, J., Dahl, T. G. & Tjonnfjord, G. E. Sustained cytogenetic response after discontinuation of imatinib mesylate in a patient with chronic myeloid leukaemia. Eur. J. Haematol. 72, 441–443 (2004)

    Article  Google Scholar 

  • Cortes, J., O’Brien, S. & Kantarjian, H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 104, 2204–2205 (2004)

    Article  CAS  Google Scholar 

  • Mauro, M. J., Druker, B. J. & Maziarz, R. T. Divergent clinical outcome in two CML patients who discontinued imatinib therapy after achieving a molecular remission. Leuk. Res. 28, 71–73 (2004)

    Article  Google Scholar 

  • Merante, S. et al. Outcome of four patients with chronic myeloid leukemia after imatinib mesylate discontinuation. Haematologica 90, 979–981 (2005)

    PubMed  Google Scholar 

  • Higashi, T. et al. Imatinib mesylate-sensitive blast crisis immediately after discontinuation of imatinib mesylate therapy in chronic myelogenous leukemia: report of two cases. Am. J. Hematol. 76, 275–278 (2004)

    Article  CAS  Google Scholar 

  • Bernardi, R. & Pandolfi, P. P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature Rev. Mol. Cell Biol. 8, 1006–1016 (2007)

    Article  CAS  Google Scholar 

  • Salomoni, P. & Pandolfi, P. P. The role of PML in tumor suppression. Cell 108, 165–170 (2002)

    Article  CAS  Google Scholar 

  • Wang, Z. G. et al. PML is essential for multiple apoptotic pathways. Nature Genet. 20, 266–272 (1998)

    Article  CAS  Google Scholar 

  • Bernardi, R. et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature 442, 779–785 (2006)

    Article  ADS  CAS  Google Scholar 

  • Gurrieri, C. et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J. Natl Cancer Inst. 96, 269–279 (2004)

    Article  CAS  Google Scholar 

  • Scaglioni, P. P. et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269–283 (2006)

    Article  CAS  Google Scholar 

  • Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004)

    Article  CAS  Google Scholar 

  • Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003)

    Article  CAS  Google Scholar 

  • Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990)

    Article  ADS  CAS  Google Scholar 

  • Klaassen, C. D. Heavy metals and heavy-metal antagonists. In The Pharmacological Basis of Therapeutics (eds Hardman, J. G., Gilman, A. G. & Limbird, L. E.) 1649–1672 (McGraw-Hill, New York, 1996)

    Google Scholar 

  • Aronson, S. M. Arsenic and old myths. R. I. Med. 77, 233–234 (1994)

    CAS  PubMed  Google Scholar 

  • Mathews, V. et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 107, 2627–2632 (2006)

    Article  CAS  Google Scholar 

  • Soignet, S. L. et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 339, 1341–1348 (1998)

    Article  CAS  Google Scholar 

  • Shen, Z. X. et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89, 3354–3360 (1997)

    CAS  PubMed  Google Scholar 

  • Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor α degradation. J. Exp. Med. 193, 1361–1371 (2001)

    Article  CAS  Google Scholar 

  • Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006)

    Article  ADS  CAS  Google Scholar 

  • Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006)

    Article  ADS  CAS  Google Scholar 

  • Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003)

    Article  CAS  Google Scholar 

  • Jørgensen, H. G. et al. Enhanced CML stem cell elimination in vitro by bryostatin priming with imatinib mesylate. Exp. Hematol. 33, 1140–1146 (2005)

    Article  Google Scholar 

  • Lallemand-Breitenbach, V. et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp. Med. 189, 1043–1052 (1999)

    Article  CAS  Google Scholar 

  • Rego, E. M., He, L. Z., Warrell, R. P., Wang, Z. G. & Pandolfi, P. P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARα and PLZF-RARα oncoproteins. Proc. Natl Acad. Sci. USA 97, 10173–10178 (2000)

    Article  ADS  CAS  Google Scholar 

  • Rego, E. M. et al. Role of promyelocytic leukemia (PML) protein in tumor suppression. J. Exp. Med. 193, 521–529 (2001)

    Article  CAS  Google Scholar 

  • Gurrieri, C. et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood 103, 2358–2362 (2004)

    Article  CAS  Google Scholar 

  • Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998)

    Article  ADS  CAS  Google Scholar 

  • Di Cristofano, A. et al. p62dok, a negative regulator of Ras and mitogen-activated protein kinase (MAPK) activity, opposes leukemogenesis by p210bcr-abl. J. Exp. Med. 194, 275–284 (2001)

    Article  CAS  Google Scholar 

  • Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Med. 12, 446–451 (2006)

    Article  CAS  Google Scholar 

  • Cross, N. C. et al. Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: correlations with acute graft-versus-host disease and relapse. Br. J. Haematol. 84, 67–74 (1993)

    Article  CAS  Google Scholar