nature.com

UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids - Nature

  • ️Klevit, Rachel E.
  • ️Sun May 01 2011

References

  1. Anan, T. et al. Human ubiqutin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 3, 751–763 (1998)

    Article  CAS  Google Scholar 

  2. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl–UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000)

    Article  CAS  Google Scholar 

  3. Brzovic, P. S. et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl Acad. Sci. USA 100, 5646–5651 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Huang, A. et al. E2–c-Cbl recognition is necessary but not sufficent for ubiquitination activity. J. Mol. Biol. 385, 507–519 (2009)

    Article  CAS  Google Scholar 

  5. Capili, A. D., Edghill, E. L., Wu, K. & Borden, K. Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J. Mol. Biol. 340, 1117–1129 (2004)

    Article  CAS  Google Scholar 

  6. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000)

    Article  CAS  Google Scholar 

  7. Marin, I., Lucas, J. I., Gradilla, A. C. & Ferrus, A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol. Genomics 17, 253–263 (2004)

    Article  CAS  Google Scholar 

  8. Tan, N. G. et al. Human homologue of ariadne promotes the ubiquitylation of translation initiation factor 4E homologous protein, 4EHP. FEBS Lett. 554, 501–504 (2003)

    Article  CAS  Google Scholar 

  9. Tokunaga, F. et al. Involvement of linear polyubuitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009)

    Article  CAS  Google Scholar 

  10. Whitcomb, E. A., Dudek, E. J., Liu, Q. & Taylor, A. Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7. Mol. Biol. Cell 20, 1–9 (2009)

    Article  CAS  Google Scholar 

  11. Fransen, K. et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn’s disease. Hum. Mol. Genet. 19, 3482–3488 (2010)

    Article  CAS  Google Scholar 

  12. Pickart, C. M. & Rose, I. A. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260, 1573–1581 (1985)

    CAS  PubMed  Google Scholar 

  13. Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-1 by viral E3 ligase mK3. J. Cell Biol. 177, 613–624 (2007)

    Article  CAS  Google Scholar 

  14. Cadwell, K. & Coscoy, L. Ubiquitination of nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Christensen, D. E., Brzovic, P. S. & Klevit, R. E. E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nature Struct. Mol. Biol. 14, 941–948 (2007)

    Article  CAS  Google Scholar 

  16. Rodrigo-Brenni, M. C. & Morgan, D. O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007)

    Article  CAS  Google Scholar 

  17. Jones, D., Crowe, E., Stevens, T. A. & Candido, E. P. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes and ubiquitin-like proteins. Genome Biology 3, RESEARCH0002 (2002)

    PubMed  Google Scholar 

  18. Yunus, A. A. & Lima, C. D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nature Struct. Mol. Biol. 13, 491–499 (2006)

    Article  CAS  Google Scholar 

  19. Wu, P. Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003)

    Article  CAS  Google Scholar 

  20. Sakata, E. et al. Crystal structure of the UbcH5bubiquitin intermediate: insight into the formation of the self-assembled E2Ub conjugates. Structure 18, 138–147 (2010)

    Article  CAS  Google Scholar 

  21. Ozkan, E., Yu, H. & Deisenhofer, J. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl Acad. Sci. USA 102, 18890–18895 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Kamadurai, H. B. et al. Insights into ubiquitin transfer cascades from a structure of UbcH5bUbiquitin-HECTNEDD4L complex. Mol. Cell 36, 1095–1102 (2009)

    Article  CAS  Google Scholar 

  23. Ardley, H. C., Tan, N. G., Rose, S. A., Markhan, A. F. & Robinson, P. A. Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulates its interaction with the ubiquitin-conjugating enzyme Ubch7. J. Biol. Chem. 276, 19640–19647 (2001)

    Article  CAS  Google Scholar 

  24. Eddins, M. J., Carlile, C. M., Gomez, K. M., Pickart, C. M. & Wolberger, C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nature Struct. Mol. Biol. 13, 915–920 (2006)

    Article  CAS  Google Scholar 

  25. Fallon, L. et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling. Nature Cell Biol. 8, 834–842 (2006)

    Article  CAS  Google Scholar 

  26. Joch, M. et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol. Biol. Cell 18, 3105–3118 (2007)

    Article  CAS  Google Scholar 

  27. Chen, D. et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J. Biol. Chem. 285, 38214–38223 (2010)

    Article  CAS  Google Scholar 

  28. Maruyama, M. et al. Novel mutations, pseudo-dominant inheritance, and possible familial affects in patients with autosomal recessive juvenille parkinsonism. Ann. Neurol. 48, 245–250 (2000)

    Article  CAS  Google Scholar 

  29. Diao, J., Zhang, Y., Huibregtse, J. M., Zhou, D. & Chen, J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nature Struct. Mol. Biol. 15, 65–70 (2008)

    Article  CAS  Google Scholar 

  30. Dastur, A., Beaudenon, S., Kelley, M., Krug, R. M. & Huibregtse, M. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 281, 4334–4338 (2005)

    Article  Google Scholar 

  31. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  Google Scholar 

  32. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999)

    Article  CAS  Google Scholar 

  33. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15, 34–39 (1999)

    Article  CAS  Google Scholar 

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  Google Scholar 

  35. Johnson, B. A. & Blevins, R. A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994)

    Article  CAS  Google Scholar 

Download references