nature.com

Protein targeting and degradation are coupled for elimination of mislocalized proteins - Nature

  • ️Hegde, Ramanujan S.
  • ️Sun Jul 10 2011

References

  1. Cross, B. C., Sinning, I., Luirink, J. & High, S. Delivering proteins for export from the cytosol. Nature Rev. Mol. Cell Biol. 10, 255–264 (2009)

    Article  CAS  Google Scholar 

  2. Rane, N. S., Yonkovich, J. L. & Hegde, R. S. Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J. 23, 4550–4559 (2004)

    Article  CAS  Google Scholar 

  3. Kang, S. W. et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127, 999–1013 (2006)

    Article  CAS  Google Scholar 

  4. Mariappan, M. et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Kim, S. J., Mitra, D., Salerno, J. R. & Hegde, R. S. Signal sequences control gating of the protein translocation channel in a substrate-specific manner. Dev. Cell 2, 207–217 (2002)

    Article  CAS  Google Scholar 

  6. Levine, C. G., Mitra, D., Sharma, A., Smith, C. L. & Hegde, R. S. The efficiency of protein compartmentalization into the secretory pathway. Mol. Biol. Cell 16, 279–291 (2005)

    Article  CAS  Google Scholar 

  7. Kim, S. J. & Hegde, R. S. Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol. Biol. Cell 13, 3775–3786 (2002)

    Article  CAS  Google Scholar 

  8. Rane, N. S., Chakrabarti, O., Feigenbaum, L. & Hegde, R. S. Signal sequence insufficiency contributes to neurodegeneration caused by transmembrane prion protein. J. Cell Biol. 188, 515–526 (2010)

    Article  CAS  Google Scholar 

  9. Orsi, A., Fioriti, L., Chiesa, R. & Sitia, R. Conditions of endoplasmic reticulum stress favor the accumulation of cytosolic prion protein. J. Biol. Chem. 281, 30431–30438 (2006)

    Article  CAS  Google Scholar 

  10. Drisaldi, B. et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem. 278, 21732–21743 (2003)

    Article  CAS  Google Scholar 

  11. Ma, J. & Lindquist, S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298, 1785–1788 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Chakrabarti, O. & Hegde, R. S. Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137, 1136–1147 (2009)

    Article  CAS  Google Scholar 

  13. Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Rane, N. S., Kang, S. W., Chakrabarti, O., Feigenbaum, L. & Hegde, R. S. Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev. Cell 15, 359–370 (2008)

    Article  CAS  Google Scholar 

  15. Buchberger, A., Bukau, B. & Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40, 238–252 (2010)

    Article  CAS  Google Scholar 

  16. McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003)

    Article  CAS  Google Scholar 

  17. Leznicki, P., Clancy, A., Schwappach, B. & High, S. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123, 2170–2178 (2010)

    Article  CAS  Google Scholar 

  18. Berndt, U., Oellerer, S., Zhang, Y., Johnson, A. E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl Acad. Sci. USA 106, 1398–1403 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001)

    Article  CAS  Google Scholar 

  20. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007)

    Article  CAS  Google Scholar 

  21. Lehner, B. et al. Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 83, 153–167 (2004)

    Article  CAS  Google Scholar 

  22. Park, S. H. et al. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin–proteasome system. Mol. Biol. Cell 18, 153–165 (2007)

    Article  Google Scholar 

  23. Eisele, F. & Wolf, D. H. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582, 4143–4146 (2008)

    Article  CAS  Google Scholar 

  24. Heck, J. W., Cheung, S. K. & Hampton, R. Y. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl Acad. Sci. USA 107, 1106–1111 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Nillegoda, N. B. et al. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell 21, 2102–2116 (2010)

    Article  CAS  Google Scholar 

  26. Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010)

    Article  CAS  Google Scholar 

  27. Ernst, R. et al. Enzymatic blockade of the ubiquitin–proteasome pathway. PLoS Biol. 8, e1000605 (2011)

    Article  Google Scholar 

  28. Wang, Q. et al. A chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 10.1016/j.molcel.2011.05.010 (in the press)

  29. Garrison, J. L., Kunkel, E. J., Hegde, R. S. & Taunton, J. A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 436, 285–289 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol. Biol. 619, 339–363 (2010)

    Article  CAS  Google Scholar 

  31. Emerman, A. B., Zhang, Z. R., Chakrabarti, O. & Hegde, R. S. Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo . Mol. Biol. Cell 21, 4325–4337 (2010)

    Article  CAS  Google Scholar 

  32. Ashok, A. & Hegde, R. S. Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation. Mol. Biol. Cell 19, 3463–3476 (2008)

    Article  CAS  Google Scholar 

  33. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996)

    Article  ADS  CAS  Google Scholar 

  34. Wu, M. M. et al. Organelle pH studies using targeted avidin and fluorescein–biotin. Chem. Biol. 7, 197–209 (2000)

    Article  CAS  Google Scholar 

  35. Magadán, J. G. et al. Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving distinct ER retention and ERAD targeting steps. PLoS Pathogens 6, e1000869 (2010)

    Article  Google Scholar 

  36. Fons, R. D., Bogert, B. A. & Hegde, R. S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529–539 (2003)

    Article  CAS  Google Scholar 

  37. Gilmore, R., Blobel, G. & Walter, P. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95, 463–469 (1982)

    Article  CAS  Google Scholar 

  38. Krieg, U. C., Walter, P. & Johnson, A. E. Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl Acad. Sci. USA 83, 8604–8608 (1986)

    Article  ADS  CAS  Google Scholar 

Download references