nature.com

Active tactile exploration using a brain–machine–brain interface - Nature

  • ️Nicolelis, Miguel A. L.
  • ️Wed Oct 05 2011

References

  1. Lebedev, M. A. & Nicolelis, M. A. Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006)

    Article  CAS  Google Scholar 

  2. Nicolelis, M. A. & Lebedev, M. A. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nature Rev. Neurosci. 10, 530–540 (2009)

    Article  CAS  Google Scholar 

  3. Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A. L. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci. 2, 664–670 (1999)

    Article  CAS  Google Scholar 

  4. Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S. & Schwartz, A. B. Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101 (2008)

    Article  CAS  ADS  Google Scholar 

  5. Moritz, C. T., Perlmutter, S. I. & Fetz, E. E. Direct control of paralysed muscles by cortical neurons. Nature 456, 639–642 (2008)

    Article  CAS  ADS  Google Scholar 

  6. Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000)

    Article  CAS  ADS  Google Scholar 

  7. Taylor, D. M., Helms-Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002)

    Article  CAS  ADS  Google Scholar 

  8. Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P. Instant neural control of a movement signal. Nature 416, 141–142 (2002)

    Article  CAS  ADS  Google Scholar 

  9. Carmena, J. M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003)

    Article  Google Scholar 

  10. Johansson, R. S. & Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56, 550–564 (1984)

    Article  CAS  Google Scholar 

  11. Flanagan, J. R. & Wing, A. M. Modulation of grip force with load force during point-to-point arm movements. Exp. Brain Res. 95, 131–143 (1993)

    Article  CAS  Google Scholar 

  12. James, T. W., Kim, S. & Fisher, J. S. The neural basis of haptic object processing. Can. J. Exp. Psychol. 61, 219–229 (2007)

    Article  Google Scholar 

  13. Chatterjee, A. Aggarwal, V. Ramos, A., Acharya, S. & Thakor, N. V. A brain-computer interface with vibrotactile biofeedback for haptic information. J. Neuroeng. Rehabil. 4, 40 (2007)

    Article  Google Scholar 

  14. Kaczmarek, K., Webster, J., Bach-y-Rita, P. & Tompkins, W. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38, 1–16 (1991)

    Article  CAS  Google Scholar 

  15. Marasco, P. D., Schultz, A. E. & Kuiken, T. A. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. Brain 132, 1441–1448 (2009)

    Article  Google Scholar 

  16. O’Doherty, J. E., Lebedev, M. A., Hanson, T. L., Fitzsimmons, N. A. & Nicolelis, M. A. A brain-machine interface instructed by direct intracortical microstimulation. Front. Integr. Neurosci. 3, 20 (2009)

    PubMed  PubMed Central  Google Scholar 

  17. Richer, F., Martinez, M., Robert, M., Bouvier, G. & Saint-Hilaire, J. M. Stimulation of human somatosensory cortex: tactile and body displacement perceptions in medial regions. Exp. Brain Res. 93, 173–176 (1993)

    Article  CAS  Google Scholar 

  18. London, B. M., Jordan, L. R., Jackson, C. R. & Miller, L. E. Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 32–36 (2008)

    Article  Google Scholar 

  19. Romo, R., Hernandez, A., Zainos, A. & Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998)

    Article  CAS  ADS  Google Scholar 

  20. Fitzsimmons, N. A., Drake, W., Hanson, T. L., Lebedev, M. A. & Nicolelis, M. A. Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J. Neurosci. 27, 5593–5602 (2007)

    Article  CAS  Google Scholar 

  21. Lederman, S. J. & Klatzky, R. L. Hand movements: a window into haptic object recognition. Cognit. Psychol. 19, 342–368 (1987)

    Article  CAS  Google Scholar 

  22. Lebedev, M. A. et al. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25, 4681–4693 (2005)

    Article  CAS  Google Scholar 

  23. Li, Z. et al. Unscented Kalman filter for brain-machine interfaces. PLoS ONE 4, e6243 (2009)

    Article  ADS  Google Scholar 

  24. Lebedev, M. A., Denton, J. M. & Nelson, R. J. Vibration-entrained and premovement activity in monkey primary somatosensory cortex. J. Neurophysiol. 72, 1654–1673 (1994)

    Article  CAS  Google Scholar 

  25. Liu, Y., Denton, J. M. & Nelson, R. J. Neuronal activity in primary motor cortex differs when monkeys perform somatosensory and visually guided wrist movements. Exp. Brain Res. 167, 571–586 (2005)

    Article  Google Scholar 

  26. Cisek, P. & Kalaska, J. F. Neural correlates of mental rehearsal in dorsal premotor cortex. Nature 431, 993–996 (2004)

    Article  CAS  ADS  Google Scholar 

  27. Graziano, M. S., Cooke, D. F. & Taylor, C. S. Coding the location of the arm by sight. Science 290, 1782–1786 (2000)

    Article  CAS  ADS  Google Scholar 

  28. Maravita, A. & Iriki, A. Tools for the body (schema). Trends Cogn. Sci. 8, 79–86 (2004)

    Article  Google Scholar 

  29. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Observation-based learning for brain-machine interfaces. Curr. Opin. Neurobiol. 18, 589–594 (2008)

    Article  CAS  Google Scholar 

  30. Dushanova, J. & Donoghue, J. Neurons in primary motor cortex engaged during action observation. Eur. J. Neurosci. 31, 386–398 (2010)

    Article  Google Scholar 

Download references