nature.com

Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe - Nature

  • ️Shen, Ken J.
  • ️Wed Dec 14 2011

References

  1. Nomoto, K. Accreting white dwarf models for type I supernovae. I—Presupernova evolution and triggering mechanisms. Astrophys. J. 253, 798–810 (1982)

    Article  ADS  CAS  Google Scholar 

  2. Iben, I., Jr & Tutukov, A. V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). Astrophys. J. Suppl. Ser. 54, 335–372 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Whelan, J. & Iben, I., Jr Binaries and supernovae of type I. Astrophys. J. 186, 1007–1014 (1973)

    Article  ADS  CAS  Google Scholar 

  4. Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984)

    Article  ADS  CAS  Google Scholar 

  5. Nomoto, K., Iwamoto, K. & Kishimoto, N. Type Ia supernovae: their origin and possible applications in cosmology. Science 276, 1378–1382 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Podsiadlowski, P., Mazzali, P., Lesaffre, P., Han, Z. & Förster, F. The nuclear diversity of type Ia supernova explosions. N. Astron. Rev. 52, 381–385 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Nugent, P. et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Naturehttp://dx.doi.org/10.1038/nature10644 (this issue).

  8. Maoz, D. & Mannucci, F. A search for the progenitors of two type Ia supernovae in NGC 1316. Mon. Not. R. Astron. Soc. 388, 421–428 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Nelemans, G., Voss, R., Roelofs, G. & Bassa, C. Limits on the X-ray and optical luminosity of the progenitor of the type Ia supernova 2007sr. Mon. Not. R. Astron. Soc. 388, 487–494 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Voss, R. & Nelemans, G. Discovery of the progenitor of the type Ia supernova 2007on. Nature 451, 802–804 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Munari, U. & Renzini, A. Are symbiotic stars the precursors of type Ia supernovae? Astrophys. J. 397, L87–L90 (1992)

    Article  ADS  Google Scholar 

  12. van den Heuvel, E. P. J., Bhattacharya, D., Nomoto, K. & Rappaport, S. A. Accreting white dwarf models for CAL 83, CAL 87, and other ultrasoft X-ray sources in the LMC. Astron. Astrophys. 262, 97–105 (1992)

    ADS  CAS  Google Scholar 

  13. Liu, W.-M., Chen, W.-C., Wang, B. & Han, Z. W. Helium-star evolutionary channel to super-Chandrasekhar mass type Ia supernovae. Astron. Astrophys. 523, A3 (2010)

    Article  Google Scholar 

  14. Yoon, S.-C. & Langer, N. The first binary star evolution model producing a Chandrasekhar mass white dwarf. Astron. Astrophys. 412, L53–L56 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Wizinowich, P. L. et al. The W. M. Keck Observatory laser guide star adaptive optics system: overview. Publ. Astron. Soc. Pacif. 118, 297–309 (2006)

    Article  ADS  Google Scholar 

  16. Hachisu, I. & Kato, M. Recurrent novae as a progenitor system of type Ia supernovae. I. RS Ophiuchi subclass: systems with a red giant companion. Astrophys. J. 558, 323–350 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Woudt, P. A. et al. The expanding bipolar shell of the helium nova V445 Puppis. Astrophys. J. 706, 738–746 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Thoroughgood, T. D., Dhillon, V. S., Littlefair, S. P., Marsh, T. R. & Smith, D. A. The mass of the white dwarf in the recurrent nova U Scorpii. Mon. Not. R. Astron. Soc. 327, 1323–1333 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Schaefer, B. E. Comprehensive photometric histories of all known Galactic recurrent novae. Astrophys. J. Suppl. Ser. 187, 275–373 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Greiner, J. Catalog of supersoft X-ray sources. N. Astron. 5, 137–141 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Di Stefano, R. The progenitors of type Ia supernovae. I. Are they supersoft sources? Astrophys. J. 712, 728–733 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Di Stefano, R. The progenitors of type Ia supernovae. II. Are they double-degenerate binaries? The symbiotic channel. Astrophys. J. 719, 474–482 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Yoon, S.-C., Podsiadlowski, P. & Rosswog, S. Remnant evolution after a carbon-oxygen white dwarf merger. Mon. Not. R. Astron. Soc. 380, 933–948 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Shen, K. J., Bildsten, L., Kasen, D. & Quataert, E. The long-term evolution of double white dwarf mergers. Preprint at http://arxiv.org/abs/1108.4036 (2011)

  25. Kasen, D. Seeing the collision of a supernova with its companion star. Astrophys. J. 708, 1025–1031 (2010)

    Article  ADS  Google Scholar 

  26. Fryer, C. L. et al. Spectra of type Ia supernovae from double degenerate mergers. Astrophys. J. 725, 296–308 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Stetson, P. B. et al. The extragalactic distance scale key project. XVI. Cepheid variables in an inner field of M101. Astrophys. J. 508, 491–517 (1998)

    Article  ADS  Google Scholar 

  28. Shappee, B. J. & Stanek, K. Z. A new Cepheid distance to the giant spiral M101 based on image subtraction of Hubble Space Telescope/Advanced Camera for Surveys observations. Astrophys. J. 733, 124–148 (2011)

    Article  ADS  Google Scholar 

  29. Hachisu, I., Kato, M., Nomoto, K. & Umeda, H. A new evolutionary path to type Ia supernovae: a helium-rich supersoft x-ray source channel. Astrophys. J. 519, 314–323 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Torres, G. On the use of empirical bolometric corrections for stars. Astron. J. 140, 1158–1162 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Maoz and S. Starrfield for comments, and the staff of the W. M. Keck Observatory, especially J. Lyke and R. Campbell, for their assistance in obtaining the NIRC adaptive optics imaging. P.P. acknowledges discussions on symbiotic binaries with J. Mikolajewska. M.M.K. acknowledges support by NASA’s Hubble Fellowship and the Carnegie-Princeton Fellowship. J.S.B.’s group was partially supported by NASA. J.S.B., A.V.F., L.B. and S.W.J. acknowledge support from the US National Science Foundation. A.V.F.’s group at UC Berkeley, and the Katzman Automatic Imaging Telescope (KAIT) and its ongoing operation, have received financial assistance from NASA, Gary and Cynthia Bengier, the Richard & Rhoda Goldman Fund, the Sylvia and Jim Katzman Foundation, and the TABASGO Foundation. E.O.O. is supported by an Einstein Fellowship from NASA. M.M.S. and J.B. acknowledge the support of Hilary Lipsitz and the American Museum of Natural History for essential funding. M.S. acknowledges support from the Royal Society. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. Observations were obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, La Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. The National Energy Research Scientific Computing Center, provided staff, computational resources, and data storage for this project.

Author information

Authors and Affiliations

  1. Department of Astronomy, University of California, Berkeley, 94720-3411, California, USA

    Weidong Li, Joshua S. Bloom, Adam A. Miller, S. Bradley Cenko, Peter E. Nugent, Joseph W. Richards, Alexei V. Filippenko, Mohan Ganeshalingam, Jeffrey M. Silverman & Ken J. Shen

  2. Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH, UK,

    Philipp Podsiadlowski, Mark Sullivan & Kate Maguire

  3. Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, 08854, New Jersey, USA

    Saurabh W. Jha, Curtis McCully & Brandon Patel

  4. Las Cumbres Observatory Global Telescope Network, Goleta, 93117, California, USA

    D. Andrew Howell

  5. Department of Physics, University of California, Santa Barbara, 93106, California, USA

    D. Andrew Howell & Lars Bildsten

  6. Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA,

    Peter E. Nugent

  7. Department of Physics, Arizona State University, Tempe, 85287-1504, Arizona, USA

    Nathaniel R. Butler

  8. Cahill Center for Astrophysics 249-17, California Institute of Technology, Pasadena, 91125, California, USA

    Eran O. Ofek & S. R. Kulkarni

  9. Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, 76100 Rehovot, Israel,

    Eran O. Ofek

  10. Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, 91101, California, USA

    Mansi M. Kasliwal

  11. Department of Statistics, University of California, Berkeley, 94720-7450, California, USA

    Joseph W. Richards

  12. Institute for Astronomy, University of Hawaii, Honolulu, 96822, Hawaii, USA

    Alan Stockton & Hsin-Yi Shih

  13. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, 93106, California, USA

    Lars Bildsten

  14. Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, New York 10024-5192, USA,

    Michael M. Shara & Joanne Bibby

  15. Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto M5S 3H4, Ontario, Canada,

    Nicholas M. Law

  16. School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel,

    Dovi Poznanski

  17. IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba, Japan,

    Robert M. Quimby

Authors

  1. Weidong Li

    You can also search for this author in PubMed Google Scholar

  2. Joshua S. Bloom

    You can also search for this author in PubMed Google Scholar

  3. Philipp Podsiadlowski

    You can also search for this author in PubMed Google Scholar

  4. Adam A. Miller

    You can also search for this author in PubMed Google Scholar

  5. S. Bradley Cenko

    You can also search for this author in PubMed Google Scholar

  6. Saurabh W. Jha

    You can also search for this author in PubMed Google Scholar

  7. Mark Sullivan

    You can also search for this author in PubMed Google Scholar

  8. D. Andrew Howell

    You can also search for this author in PubMed Google Scholar

  9. Peter E. Nugent

    You can also search for this author in PubMed Google Scholar

  10. Nathaniel R. Butler

    You can also search for this author in PubMed Google Scholar

  11. Eran O. Ofek

    You can also search for this author in PubMed Google Scholar

  12. Mansi M. Kasliwal

    You can also search for this author in PubMed Google Scholar

  13. Joseph W. Richards

    You can also search for this author in PubMed Google Scholar

  14. Alan Stockton

    You can also search for this author in PubMed Google Scholar

  15. Hsin-Yi Shih

    You can also search for this author in PubMed Google Scholar

  16. Lars Bildsten

    You can also search for this author in PubMed Google Scholar

  17. Michael M. Shara

    You can also search for this author in PubMed Google Scholar

  18. Joanne Bibby

    You can also search for this author in PubMed Google Scholar

  19. Alexei V. Filippenko

    You can also search for this author in PubMed Google Scholar

  20. Mohan Ganeshalingam

    You can also search for this author in PubMed Google Scholar

  21. Jeffrey M. Silverman

    You can also search for this author in PubMed Google Scholar

  22. S. R. Kulkarni

    You can also search for this author in PubMed Google Scholar

  23. Nicholas M. Law

    You can also search for this author in PubMed Google Scholar

  24. Dovi Poznanski

    You can also search for this author in PubMed Google Scholar

  25. Robert M. Quimby

    You can also search for this author in PubMed Google Scholar

  26. Curtis McCully

    You can also search for this author in PubMed Google Scholar

  27. Brandon Patel

    You can also search for this author in PubMed Google Scholar

  28. Kate Maguire

    You can also search for this author in PubMed Google Scholar

  29. Ken J. Shen

    You can also search for this author in PubMed Google Scholar

Contributions

W.L., J.S.B., S.W.J., C.M. and B.P. analysed the Hubble Space Telescope photometry in the context of progenitor limits. P.P. contributed the analysis of progenitor models. A.A.M., J.W.R. and S.B.C. analysed historical imaging from the Palomar Transient Factory (PTF) and KAIT in the context of nova limits. M.M.K. and K.J.S. provided the analysis of Spitzer observations. M.M.S. and J.B. provided analysis of the Hubble Space Telescope imaging. M.M.S. also contributed interpretation of the progenitor limits. N.R.B., E.O.O. and L.B. contributed analysis and interpretation of the historical X-ray imaging. D.P., R.M.Q., S.R.K., N.M.L., E.O.O., S.B.C., M.S., D.A.H., J.S.B., P.E.N., M.M.K., L.B. and K.M. were responsible for obtaining, reducing, and analysing the PTF observations. A.S. and H.-Y.S. obtained the Keck adaptive optics imaging and S.B.C. reduced and analysed those images. A.V.F., M.G., W.L. and J.M.S. were responsible for the KAIT imaging and analysis.

Corresponding author

Correspondence to Weidong Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Tables 1-5, Supplementary Figures 1-4 and additional references. (PDF 1907 kb)

PowerPoint slides

About this article

Cite this article

Li, W., Bloom, J., Podsiadlowski, P. et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348–350 (2011). https://doi.org/10.1038/nature10646

Download citation

  • Received: 07 September 2011

  • Accepted: 14 October 2011

  • Published: 14 December 2011

  • Issue Date: 15 December 2011

  • DOI: https://doi.org/10.1038/nature10646