nature.com

MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons - Nature

  • ️Sanes, Joshua R.
  • ️Sun Mar 11 2012
  • Cook, J. E. & Chalupa, L. M. Retinal mosaics: new insights into an old concept. Trends Neurosci. 23, 26–34 (2000)

    Article  CAS  Google Scholar 

  • Wässle, H. & Riemann, H. J. The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B 200, 441–461 (1978)

    Article  ADS  Google Scholar 

  • Eglen, S. J. Development of regular cellular spacing in the retina: theoretical models. Math. Med. Biol. 23, 79–99 (2006)

    Article  Google Scholar 

  • Reese, B. E. & Galli-Resta, L. The role of tangential dispersion in retinal mosaic formation. Prog. Retin. Eye Res. 21, 153–168 (2002)

    Article  Google Scholar 

  • Rockhill, R. L., Euler, T. & Masland, R. H. Spatial order within but not between types of retinal neurons. Proc. Natl Acad. Sci. USA 97, 2303–2307 (2000)

    Article  ADS  CAS  Google Scholar 

  • Huckfeldt, R. M. et al. Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nature Neurosci. 12, 35–43 (2009)

    Article  CAS  Google Scholar 

  • Poché, R. A. et al. Somal positioning and dendritic growth of horizontal cells are regulated by interactions with homotypic neighbors. Eur. J. Neurosci. 27, 1607–1614 (2008)

    Article  Google Scholar 

  • Galli-Resta, L. Local, possibly contact-mediated signalling restricted to homotypic neurons controls the regular spacing of cells within the cholinergic arrays in the developing rodent retina. Development 127, 1509–1516 (2000)

    CAS  PubMed  Google Scholar 

  • Galli-Resta, L., Resta, G., Tan, S. S. & Reese, B. E. Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci. 17, 7831–7838 (1997)

    Article  CAS  Google Scholar 

  • Wu, H.-H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nature Neurosci. 12, 1534–1541 (2009)

    Article  CAS  Google Scholar 

  • MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006)

    Article  CAS  Google Scholar 

  • Reddien, P. W. & Horvitz, H. R. The engulfment process of programmed cell death in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 20, 193–221 (2004)

    Article  CAS  Google Scholar 

  • Hamon, Y. et al. Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS ONE 1, e120 (2006)

    Article  ADS  Google Scholar 

  • Suzuki, E. & Nakayama, M. MEGF10 is a mammalian ortholog of CED-1 that interacts with clathrin assembly protein complex 2 medium chain and induces large vacuole formation. Exp. Cell Res. 313, 3729–3742 (2007)

    Article  CAS  Google Scholar 

  • Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010)

    Article  CAS  Google Scholar 

  • Kay, J. N. et al. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31, 7753–7762 (2011)

    Article  CAS  Google Scholar 

  • Kay, J. N., Voinescu, P. E., Chu, M. W. & Sanes, J. R. Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate. Nature Neurosci. 14, 965–972 (2011)

    Article  CAS  Google Scholar 

  • Demb, J. B. Cellular mechanisms for direction selectivity in the retina. Neuron 55, 179–186 (2007)

    Article  CAS  Google Scholar 

  • Haverkamp, S. & Wässle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424, 1–23 (2000)

    Article  CAS  Google Scholar 

  • Keeley, P. W., Whitney, I. E., Raven, M. A. & Reese, B. E. Dendritic spread and functional coverage of starburst amacrine cells. J. Comp. Neurol. 505, 539–546 (2007)

    Article  Google Scholar 

  • Elshatory, Y. et al. Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J. Neurosci. 27, 12707–12720 (2007)

    Article  CAS  Google Scholar 

  • Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008)

    Article  CAS  Google Scholar 

  • Rodieck, R. W. The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci. 6, 95–111 (1991)

    Article  CAS  Google Scholar 

  • Raven, M. A., Eglen, S. J., Ohab, J. J. & Reese, B. E. Determinants of the exclusion zone in dopaminergic amacrine cell mosaics. J. Comp. Neurol. 461, 123–136 (2003)

    Article  Google Scholar 

  • Fuerst, P. G., Koizumi, A., Masland, R. H. & Burgess, R. W. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451, 470–474 (2008)

    Article  ADS  CAS  Google Scholar 

  • Fuerst, P. G. et al. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 64, 484–497 (2009)

    Article  CAS  Google Scholar 

  • Matsuda, T. & Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA 101, 16–22 (2004)

    Article  ADS  CAS  Google Scholar 

  • Solecki, D. J., Model, L., Gaetz, J., Kapoor, T. M. & Hatten, M. E. Par6α signaling controls glial-guided neuronal migration. Nature Neurosci. 7, 1195–1203 (2004)

    Article  CAS  Google Scholar 

  • Budry, L. et al. Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc. Natl Acad. Sci. USA 108, 12515–12520 (2011)

    Article  ADS  CAS  Google Scholar 

  • Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011)

    Article  CAS  Google Scholar 

  • Huberman, A. D. et al. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327–334 (2009)

    Article  CAS  Google Scholar 

  • Gray, G. E. & Sanes, J. R. Lineage of radial glia in the chicken optic tectum. Development 114, 271–283 (1992)

    CAS  PubMed  Google Scholar 

  • Hong, Y. K., Kim, I.-J. & Sanes, J. R. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519, 1691–1711 (2011)

    Article  CAS  Google Scholar 

  • Euler, T. WinDRP website. http://www.mpimf-heidelberg.mpg.de/teuler/WinDRP/ReadMe.htm (2003)

  • Whitney, I. E., Keeley, P. W., Raven, M. A. & Reese, B. E. Spatial patterning of cholinergic amacrine cells in the mouse retina. J. Comp. Neurol. 508, 1–12 (2008)

    Article  Google Scholar 

  • Wiegand, T. & Moloney, K. A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229 (2004)

    Article  Google Scholar