nature.com

Genetic recombination is directed away from functional genomic elements in mice - Nature

  • ️Petukhova, Galina V.
  • ️Sun May 13 2012
  • Parvanov, E. D., Petkov, P. M. & Paigen, K. Prdm9 controls activation of mammalian recombination hotspots. Science 327, 835 (2010)

    Article  CAS  ADS  Google Scholar 

  • Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327, 876–879 (2010)

    Article  CAS  ADS  Google Scholar 

  • Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840 (2010)

    Article  CAS  ADS  Google Scholar 

  • Berg, I. L. et al. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nature Genet. 42, 859–863 (2010)

    Article  CAS  Google Scholar 

  • Berg, I. L. et al. Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations. Proc. Natl Acad. Sci. USA 108, 12378–12383 (2011)

    Article  CAS  ADS  Google Scholar 

  • Hinch, A. G. et al. The landscape of recombination in African–Americans. Nature 476, 170–175 (2011)

    Article  CAS  ADS  Google Scholar 

  • Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323, 373–375 (2009)

    Article  CAS  ADS  Google Scholar 

  • Grey, C. et al. Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination. PLoS Biol. 9, e1001176 (2011)

    Article  CAS  Google Scholar 

  • Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438, 374–378 (2005)

    Article  CAS  ADS  Google Scholar 

  • Burgoyne, P. S. Genetic homology and crossing over in the X and Y chromosomes of mammals. Hum. Genet. 61, 85–90 (1982)

    Article  CAS  Google Scholar 

  • Neale, M. J. & Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006)

    Article  CAS  ADS  Google Scholar 

  • Smagulova, F. et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472, 375–378 (2011)

    Article  CAS  ADS  Google Scholar 

  • Khil, P. P., Smagulova, F., Brick, K. M., Camerini-Otero, R. D. & Petukhova, G. V. Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome Res. http://dx.doi.org/10.1101/gr.130583.111 (2012)

  • Borde, V. et al. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J. 28, 99–111 (2009)

    Article  CAS  Google Scholar 

  • Buard, J., Barthès, P., Grey, C. & de Massy, B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J. 28, 2616–2624 (2009)

    Article  CAS  Google Scholar 

  • Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007)

    Article  CAS  Google Scholar 

  • Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011)

    Article  CAS  ADS  Google Scholar 

  • Pekowska, A. et al. H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 30, 4198–4210 (2011)

    Article  CAS  Google Scholar 

  • Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011)

    Article  CAS  Google Scholar 

  • Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011)

    Article  CAS  Google Scholar 

  • Wu, T. C. & Lichten, M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263, 515–518 (1994)

    Article  CAS  ADS  Google Scholar 

  • Kauppi, L. et al. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 331, 916–920 (2011)

    Article  CAS  ADS  Google Scholar 

  • Oliver, P. L. et al. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet. 5, e1000753 (2009)

    Article  Google Scholar 

  • Bellott, D. W. & Page, D. C. Reconstructing the evolution of vertebrate sex chromosomes. Cold Spring Harb. Symp. Quant. Biol. 74, 345–353 (2009)

    Article  CAS  Google Scholar 

  • Lim, F. L., Soulez, M., Koczan, D., Thiesen, H. J. & Knight, J. C. A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene 17, 2013–2018 (1998)

    Article  CAS  Google Scholar 

  • Margolin, J. F. et al. Krüppel-associated boxes are potent transcriptional repression domains. Proc. Natl Acad. Sci. USA 91, 4509–4513 (1994)

    Article  CAS  ADS  Google Scholar 

  • Axelsson, E. et al. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. Genome Res. 22, 51–63 (2012)

    Article  CAS  Google Scholar 

  • Muñoz-Fuentes, V., Di Rienzo, A. & Vilà, C. Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes. PLoS ONE 6, e25498 (2011)

    Article  ADS  Google Scholar 

  • Jothi, R., Cuddapah, S., Barski, A., Cui, K. & Zhao, K. Genome-wide identification of in vivo protein–DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221–5231 (2008)

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008)

    Article  Google Scholar