nature.com

Oligodendroglia metabolically support axons and contribute to neurodegeneration - Nature

  • ️Rothstein, Jeffrey D.
  • ️Wed Jul 11 2012
  • Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998)

    Article  CAS  Google Scholar 

  • Garbern, J. Y. et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125, 551–561 (2002)

    Article  Google Scholar 

  • Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998)

    Article  ADS  CAS  Google Scholar 

  • Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genet. 33, 366–374 (2003)

    Article  CAS  Google Scholar 

  • Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012)

    Article  ADS  Google Scholar 

  • Pierre, K. & Pellerin, L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 94, 1–14 (2005)

    Article  CAS  Google Scholar 

  • Koehler-Stec, E. M., Simpson, I. A., Vannucci, S. J., Landschulz, K. T. & Landschulz, W. H. Monocarboxylate transporter expression in mouse brain. Am. J. Physiol. 275, E516–E524 (1998)

    CAS  PubMed  Google Scholar 

  • Pierre, K., Pellerin, L., Debernardi, R., Riederer, B. M. & Magistretti, P. J. Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100, 617–627 (2000)

    Article  CAS  Google Scholar 

  • Halestrap, A. P. & Price, N. T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343, 281–299 (1999)

    Article  CAS  Google Scholar 

  • Rinholm, J. E. et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J. Neurosci. 31, 538–548 (2011)

    Article  CAS  Google Scholar 

  • Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994)

    Article  ADS  CAS  Google Scholar 

  • Walz, W. & Mukerji, S. Lactate production and release in cultured astrocytes. Neurosci. Lett. 86, 296–300 (1988)

    Article  CAS  Google Scholar 

  • Pellerin, L. et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev. Neurosci. 20, 291–299 (1998)

    Article  CAS  Google Scholar 

  • Berthet, C. et al. Neuroprotective role of lactate after cerebral ischemia. J. Cereb. Blood Flow Metab. 29, 1780–1789 (2009)

    Article  CAS  Google Scholar 

  • Suzuki, A. et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011)

    Article  CAS  Google Scholar 

  • Benarroch, E. E. Oligodendrocytes: susceptibility to injury and involvement in neurologic disease. Neurology 72, 1779–1785 (2009)

    Article  Google Scholar 

  • Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neurosci. 11, 251–253 (2008)

    Article  CAS  Google Scholar 

  • Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D. & Bergles, D. E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68, 668–681 (2010)

    Article  CAS  Google Scholar 

  • Pellerin, L., Pellegri, G., Martin, J. L. & Magistretti, P. J. Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc. Natl Acad. Sci. USA 95, 3990–3995 (1998)

    Article  ADS  CAS  Google Scholar 

  • Chiry, O. et al. Expression of the monocarboxylate transporter MCT1 in the adult human brain cortex. Brain Res. 1070, 65–70 (2006)

    Article  CAS  Google Scholar 

  • Gerhart, D. Z., Enerson, B. E., Zhdankina, O. Y., Leino, R. L. & Drewes, L. R. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol. 273, E207–E213 (1997)

    CAS  PubMed  Google Scholar 

  • Regan, M. R. et al. Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J. Neurosci. 27, 6607–6619 (2007)

    Article  CAS  Google Scholar 

  • Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331–343 (2000)

    Article  CAS  Google Scholar 

  • Hanu, R., McKenna, M., O’Neill, A., Resneck, W. G. & Bloch, R. J. Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am. J. Physiol. Cell Physiol. 278, C921–C930 (2000)

    Article  CAS  Google Scholar 

  • Pellerin, L., Bergersen, L. H., Halestrap, A. P. & Pierre, K. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J. Neurosci. Res. 79, 55–64 (2005)

    Article  CAS  Google Scholar 

  • Bergersen, L., Rafiki, A. & Ottersen, O. P. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem. Res. 27, 89–96 (2002)

    Article  CAS  Google Scholar 

  • Murray, C. M. et al. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nature Chem. Biol. 1, 371–376 (2005)

    Article  CAS  Google Scholar 

  • Suh, S. W. et al. Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmet hyl)propyl]-1H-indole-2-carboxamide). J. Pharmacol. Exp. Ther. 321, 45–50 (2007)

    Article  CAS  Google Scholar 

  • Heyer, E. J., Nowak, L. M. & Macdonald, R. L. Membrane depolarization and prolongation of calcium-dependent action potentials of mouse neurons in cell culture by two convulsants: bicuculline and penicillin. Brain Res. 232, 41–56 (1982)

    Article  CAS  Google Scholar 

  • Mayer, M. L. & Westbrook, G. L. Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp. J. Physiol. (Lond.) 354, 29–53 (1984)

    Article  CAS  Google Scholar 

  • Edgar, J. M. et al. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia 57, 1815–1824 (2009)

    Article  Google Scholar 

  • Morrison, B. M., Shu, I. W., Wilcox, A. L., Gordon, J. W. & Morrison, J. H. Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp. Neurol. 165, 207–220 (2000)

    Article  CAS  Google Scholar 

  • Sasaki, S. & Maruyama, S. Increase in diameter of the axonal initial segment is an early change in amyotrophic lateral sclerosis. J. Neurol. Sci. 110, 114–120 (1992)

    Article  CAS  Google Scholar 

  • Tekkök, S. B., Brown, A. M., Westenbroek, R., Pellerin, L. & Ransom, B. R. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J. Neurosci. Res. 81, 644–652 (2005)

    Article  Google Scholar 

  • Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl Acad. Sci. USA 101, 10380–10385 (2004)

    Article  ADS  CAS  Google Scholar 

  • Doerflinger, N. H., Macklin, W. B. & Popko, B. Inducible site-specific recombination in myelinating cells. Genesis 35, 63–72 (2003)

    Article  CAS  Google Scholar 

  • Kirk, P. et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19, 3896–3904 (2000)

    Article  CAS  Google Scholar 

  • Sánchez-Abarca, L. I., Tabernero, A. & Medina, J. M. Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36, 321–329 (2001)

    Article  Google Scholar 

  • Rinholm, J. E. et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J. Neurosci. 31, 538–548 (2011)

    Article  CAS  Google Scholar 

  • Seilhean, D. et al. Accumulation of TDP-43 and α-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol. 118, 561–573 (2009)

    Article  Google Scholar 

  • Brenner, M., Kisseberth, W. C., Su, Y., Besnard, F. & Messing, A. GFAP promoter directs astrocyte-specific expression in transgenic mice. J. Neurosci. 14, 1030–1037 (1994)

    Article  CAS  Google Scholar 

  • Yang, Y. et al. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59, 200–207 (2011)

    Article  Google Scholar 

  • Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008)

    Article  CAS  Google Scholar 

  • Buntinx, M. et al. Characterization of three human oligodendroglial cell lines as a model to study oligodendrocyte injury: morphology and oligodendrocyte-specific gene expression. J. Neurocytol. 32, 25–38 (2003)

    Article  CAS  Google Scholar 

  • You, F., Osawa, Y., Hayashi, S. & Nakashima, S. Immediate early gene IEX-1 induces astrocytic differentiation of U87-MG human glioma cells. J. Cell. Biochem. 100, 256–265 (2007)

    Article  CAS  Google Scholar 

  • Maekawa, F., Minehira, K., Kadomatsu, K. & Pellerin, L. Basal and stimulated lactate fluxes in primary cultures of astrocytes are differentially controlled by distinct proteins. J. Neurochem. 107, 789–798 (2008)

    Article  CAS  Google Scholar 

  • Rothstein, J. D., Jin, L., Dykes-Hoberg, M. & Kuncl, R. W. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl Acad. Sci. USA 90, 6591–6595 (1993)

    Article  ADS  CAS  Google Scholar 

  • McIver, S. R. et al. Lentiviral transduction of murine oligodendrocytes in vivo. J. Neurosci. Res. 82, 397–403 (2005)

    Article  CAS  Google Scholar 

  • Yang, Y., Gozen, O., Vidensky, S., Robinson, M. B. & Rothstein, J. D. Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58, 277–286 (2010)

    PubMed  PubMed Central  Google Scholar