nature.com

Serine is a natural ligand and allosteric activator of pyruvate kinase M2 - Nature

  • ️Gottlieb, Eyal
  • ️Sun Oct 14 2012

References

  1. Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature Rev. Cancer 10, 267–277 (2010)

    Article  CAS  Google Scholar 

  2. Chaneton, B. & Gottlieb, E. Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci. 37, 309–316 (2012)

    Article  CAS  Google Scholar 

  3. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Altenberg, B. & Greulich, K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84, 1014–1020 (2004)

    Article  CAS  Google Scholar 

  5. Mazurek, S., Boschek, C. B., Hugo, F. & Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol. 15, 300–308 (2005)

    Article  CAS  Google Scholar 

  6. Yamada, K. & Noguchi, T. Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem. J. 337, 1–11 (1999)

    Article  CAS  Google Scholar 

  7. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet. 43, 869–874 (2011)

    Article  CAS  Google Scholar 

  9. Pollari, S. et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat. 125, 421–430 (2011)

    Article  CAS  Google Scholar 

  10. Vander Heiden, M. G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Dombrauckas, J. D., Santarsiero, B. D. & Mesecar, A. D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005)

    Article  CAS  Google Scholar 

  12. Hitosugi, T. et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009)

    Article  Google Scholar 

  13. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Ashizawa, K., Willingham, M. C., Liang, C. M. & Cheng, S. Y. In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J. Biol. Chem. 266, 16842–16846 (1991)

    CAS  PubMed  Google Scholar 

  15. Spellman, C. M. & Fottrell, P. F. Similarities between pyruvate kinase from human placenta and tumours. FEBS Lett. 37, 281–284 (1973)

    Article  CAS  Google Scholar 

  16. Eigenbrodt, E., Leib, S., Kramer, W., Friis, R. R. & Schoner, W. Structural and kinetic differences between the M2 type pyruvate kinases from lung and various tumors. Biomed. Biochim. Acta 42, S278–S282 (1983)

    CAS  PubMed  Google Scholar 

  17. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012)

    Article  ADS  CAS  Google Scholar 

  18. Davies, T. G. & Tickle, I. J. Fragment screening using X-ray crystallography. Top. Curr. Chem. 317, 33–59 (2012)

    Article  CAS  Google Scholar 

  19. Allali-Hassani, A. et al. A survey of proteins encoded by non-synonymous single nucleotide polymorphisms reveals a significant fraction with altered stability and activity. Biochem. J. 424, 15–26 (2009)

    Article  CAS  Google Scholar 

  20. Medina, M. A., Marquez, J. & Nunez de Castro, I. Interchange of amino acids between tumor and host. Biochem. Med. Metab. Biol. 48, 1–7 (1992)

    Article  CAS  Google Scholar 

  21. Márquez, J., Sanchez-Jimenez, F., Medina, M. A., Quesada, A. R. & Nunez de Castro, I. Nitrogen metabolism in tumor bearing mice. Arch. Biochem. Biophys. 268, 667–675 (1989)

    Article  Google Scholar 

  22. Mattevi, A., Bolognesi, M. & Valentini, G. The allosteric regulation of pyruvate kinase. FEBS Lett. 389, 15–19 (1996)

    Article  CAS  Google Scholar 

  23. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011)

    Article  ADS  CAS  Google Scholar 

  24. de Koning, T. J. et al. l-serine in disease and development. Biochem. J. 371, 653–661 (2003)

    Article  CAS  Google Scholar 

  25. Luo, B., Groenke, K., Takors, R., Wandrey, C. & Oldiges, M. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A 1147, 153–164 (2007)

    Article  CAS  Google Scholar 

  26. Salituro, F. G. & Saunders, J. O. Therapeutic compositions and related methods of use. PTC patent application WO/2010/118063. (2010)

  27. Boxer, M. B. et al. Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 53, 1048–1055 (2010)

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  29. Mooij, W. T. et al. Automated protein-ligand crystallography for structure-based drug design. Chem Med Chem 1, 827–838 (2006)

    Article  CAS  Google Scholar 

  30. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992)

    Article  ADS  Google Scholar 

  31. Diederichs, K. & Karplus, P. A. Improved R factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269–275 (1997)

    Article  CAS  Google Scholar 

  32. Weiss, M. S. & Hilgenfeld, R. On the use of the merging R factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203–205 (1997)

    Article  CAS  Google Scholar 

  33. Weiss, M. S. Global indicators of X-ray data quality. J. Appl. Crystallogr. 34, 130–135 (2001)

    Article  CAS  Google Scholar 

  34. Pedrioli, P. G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnol. 22, 1459–1466 (2004)

    Article  CAS  Google Scholar 

  35. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008)

    Article  CAS  Google Scholar 

  36. Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008)

    Article  Google Scholar 

  37. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006)

    Article  CAS  Google Scholar 

  38. Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996)

    Article  ADS  CAS  Google Scholar 

  39. Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A. & Breitling, R. PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal. Chem. 83, 2786–2793 (2011)

    Article  CAS  Google Scholar 

Download references