nature.com

The emergence of functional microcircuits in visual cortex - Nature

  • ️Mrsic-Flogel, Thomas D.
  • ️Wed Apr 03 2013
  • Binzegger, T., Douglas, R. J. & Martin, K. A. C. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004)

    Article  CAS  Google Scholar 

  • Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005)

    Article  Google Scholar 

  • Brown, S. P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009)

    Article  ADS  CAS  Google Scholar 

  • Perin, R., Berger, T. K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. Proc. Natl Acad. Sci. USA 108, 5419–5424 (2011)

    Article  ADS  CAS  Google Scholar 

  • Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011)

    Article  ADS  CAS  Google Scholar 

  • Yoshimura, Y., Dantzker, J. L. M. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005)

    Article  ADS  CAS  Google Scholar 

  • Yu, Y.-C. et al. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486, 113–117 (2012)

    Article  ADS  CAS  Google Scholar 

  • Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992)

    Article  ADS  CAS  Google Scholar 

  • Li, Y. et al. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 486, 118–121 (2012)

    Article  ADS  CAS  Google Scholar 

  • Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    Article  ADS  CAS  Google Scholar 

  • White, L. E. & Fitzpatrick, D. Vision and cortical map development. Neuron 56, 327–338 (2007)

    Article  CAS  Google Scholar 

  • Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008)

    Article  CAS  Google Scholar 

  • Innocenti, G. M. & Price, D. J. Exuberance in the development of cortical networks. Nature Rev. Neurosci. 6, 955–965 (2005)

    Article  CAS  Google Scholar 

  • Purves, D., White, L. E. & Riddle, D. R. Is neural development Darwinian? Trends Neurosci. 19, 460–464 (1996)

    Article  CAS  Google Scholar 

  • Mrsic-Flogel, T. D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007)

    Article  CAS  Google Scholar 

  • Smith, S. L. & Häusser, M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nature Neurosci. 13, 1144–1149 (2010)

    Article  CAS  Google Scholar 

  • Bonin, V., Histed, M. H., Yurgenson, S. & Reid, R. C. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 18506–18521 (2011)

    Article  CAS  Google Scholar 

  • Hubel, D. H. & Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963)

    Article  CAS  Google Scholar 

  • Chapman, B. & Stryker, M. P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 (1993)

    Article  CAS  Google Scholar 

  • Krug, K., Akerman, C. J. & Thompson, I. D. Responses of neurons in neonatal cortex and thalamus to patterned visual stimulation through the naturally closed lids. J. Neurophysiol. 85, 1436–1443 (2001)

    Article  CAS  Google Scholar 

  • Rochefort, N. L. et al. Development of direction selectivity in mouse cortical neurons. Neuron 71, 425–432 (2011)

    Article  CAS  Google Scholar 

  • White, L. E., Coppola, D. M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001)

    Article  ADS  CAS  Google Scholar 

  • Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    Article  ADS  CAS  Google Scholar 

  • Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D. & Tolhurst, D. J. The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci. 23, 4746–4759 (2003)

    Article  CAS  Google Scholar 

  • Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nature Neurosci. 14, 1045–1052 (2011)

    Article  CAS  Google Scholar 

  • Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995)

    Article  ADS  CAS  Google Scholar 

  • Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature Neurosci. 13, 344–352 (2010)

    Article  CAS  Google Scholar 

  • Ohtsuki, G. et al. Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron 75, 65–72 (2012)

    Article  CAS  Google Scholar 

  • Callaway, E. M. & Katz, L. C. Emergence and refinement of clustered horizontal connections in cat striate cortex. J. Neurosci. 10, 1134–1153 (1990)

    Article  CAS  Google Scholar 

  • Ruthazer, E. S. & Stryker, M. P. The role of activity in the development of long-range horizontal connections in area 17 of the ferret. J. Neurosci. 16, 7253–7269 (1996)

    Article  CAS  Google Scholar 

  • Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. D. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods 1, 31–37 (2004)

    Article  CAS  Google Scholar 

  • Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997)

    Article  CAS  Google Scholar 

  • Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997)

    Article  CAS  Google Scholar 

  • Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010)

    Article  Google Scholar 

  • Ringach, D. L. Mapping receptive fields in primary visual cortex. J. Physiol. (Lond.) 558, 717–728 (2004)

    Article  CAS  Google Scholar 

  • Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001)

    Article  Google Scholar 

  • Agresti, A. Categorical Data Analysis 2nd edn 181–182 (Wiley-Interscience, 2002)

    Book  Google Scholar 

  • Frick, A., Feldmeyer, D. & Sakmann, B. Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex. J. Physiol. (Lond.) 585, 103–116 (2007)

    Article  CAS  Google Scholar 

  • Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  • Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl Acad. Sci. USA 99, 10831–10836 (2002)

    Article  ADS  CAS  Google Scholar 

  • Badel, L. et al. Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J. Neurophysiol. 99, 656–666 (2008)

    Article  MathSciNet  Google Scholar 

  • O’Connor, D. H., Wittenberg, G. M. & Wang, S. S.-H. Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J. Neurophysiol. 94, 1565–1573 (2005)

    Article  Google Scholar 

  • Artola, A., Bröcher, S. & Singer, W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69–72 (1990)

    Article  ADS  CAS  Google Scholar 

  • Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004)

    Article  CAS  Google Scholar 

  • Gerstner, W., Kempter, R., Van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

    Article  ADS  CAS  Google Scholar 

  • Pfister, J.-P. & Gerstner, W. Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682 (2006)

    Article  CAS  Google Scholar 

  • Ostojic, S., Brunel, N. & Hakim, V. Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J. Comput. Neurosci. 26, 369–392 (2009)

    Article  MathSciNet  Google Scholar