nature.com

Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant - Nature

  • ️Rosenbaum, Daniel M.
  • ️Mon Dec 22 2014
  • Li, J., Hu, Z. & de Lecea, L. The hypocretins/orexins: integrators of multiple physiological functions. Br. J. Pharmacol. 171, 332–350 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Michelson, D. et al. Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol. 13, 461–471 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Winrow, C. J. & Renger, J. J. Discovery and development of orexin receptor antagonists as therapeutics for insomnia. Br. J. Pharmacol. 171, 283–293 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y. et al. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J. Pharmacol. Sci. 92, 259–266 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Cox, C. D. et al. Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J. Med. Chem. 53, 5320–5332 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into 2-adrenergic receptor function. Science 318, 1266–1273 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009)

    Article  CAS  PubMed  Google Scholar 

  • White, J. F. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508–513 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Egloff, P. et al. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 111, E655–E662 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horcajada, C., Guinovart, J. J., Fita, I. & Ferrer, J. C. Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J. Biol. Chem. 281, 2923–2931 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Manglik, A. et al. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Malherbe, P. et al. Mapping the binding pocket of dual antagonist almorexant to human orexin 1 and orexin 2 receptors: comparison with the selective OX1 antagonist SB-674042 and the selective OX2 antagonist N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulfonyl)-amino]-N-pyridin-3-ylmethyl-acetamide (EMPA). Mol. Pharmacol. 78, 81–93 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballesteros, J. A. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Bokoch, M. P. et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–112 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, S. G. F. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, C. D. et al. Conformational analysis of N,N-disubstituted-1,4-diazepane orexin receptor antagonists and implications for receptor binding. Bioorg. Med. Chem. Lett. 19, 2997–3001 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Kolb, P. et al. Structure-based discovery of β2-adrenergic receptor ligands. Proc. Natl Acad. Sci. USA 106, 6843–6848 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Brisbare-Roch, C. et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nature Med. 13, 150–155 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Malherbe, P. et al. Biochemical and behavioural characterization of EMPA, a novel high-affinity, selective antagonist for the OX2 receptor. Br. J. Pharmacol. 156, 1326–1341 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, C. J. et al. Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br. J. Pharmacol. 141, 340–346 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Tran, D.-T. et al. Chimeric, mutant orexin receptors show key interactions between orexin receptors, peptides and antagonists. Eur. J. Pharmacol. 667, 120–128 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Kobilka, B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem. 231, 269–271 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowtan, K. Fitting molecular fragments into electron density. Acta Crystallogr. D 64, 83–89 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Painter, J. & Merritt, E. A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 29, 109-–111 (2006)

    Google Scholar 

  • Schüttelkopf, A. W. & van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004)

    Article  PubMed  Google Scholar 

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Rocchia, W., Alexov, E. & Honig, B. Extending the applicability of the nonlinear Poisson–Boltzmann equation: multiple dielectric constants and multivalent ions. J. Phys. Chem. B 105, 6507–6514 (2001)

    Article  CAS  Google Scholar 

  • Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Irwin, J. J. et al. Automated docking screens: a feasibility study. J. Med. Chem. 52, 5712–5720 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mysinger, M. M. & Shoichet, B. K. Rapid context-dependent ligand desolvation in molecular docking. J. Chem. Inf. Model. 50, 1561–1573 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchmair, J., Wolber, G., Laggner, C. & Langer, T. Comparative performance assessment of the conformational model generators Omega and Catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J. Chem. Inf. Model. 46, 1848–1861 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Neudert, G. & Klebe, G. DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J. Chem. Inf. Model. 51, 2731–2745 (2011)

    Article  CAS  PubMed  Google Scholar