nature.com

Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate - Nature

  • ️Pearson, Paul N.
  • ️Mon Apr 25 2016
  • Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008)

    Article  ADS  CAS  Google Scholar 

  • Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl Acad. Sci. USA (2013)

  • Lunt, D. J. et al. CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. Geology 38, 875–878 (2010)

    Article  ADS  CAS  Google Scholar 

  • Loptson, C. A., Lunt, D. J. & Francis, J. E. Investigating vegetation-climate feedbacks during the early Eocene. Clim. Past 10, 419–436 (2014)

    Article  Google Scholar 

  • Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nature Geosci. 4, 418–420 (2011)

    Article  ADS  CAS  Google Scholar 

  • Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pearson, P. N. & Palmer, M. R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284, 1824–1826 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14 (2013)

    Article  ADS  CAS  Google Scholar 

  • Foster, G. L. Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008)

    Article  ADS  CAS  Google Scholar 

  • Klochko, K. et al. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006)

    Article  ADS  CAS  Google Scholar 

  • Jagniecki, E. A., Lowenstein, T. K., Jenkins, D. M. & Demicco, R. V. Eocene atmospheric CO2 from the nahcolite proxy. Geology 43, 1075–1078 (2015)

    CAS  Google Scholar 

  • Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461, 1110–1113 (2009)

    Article  ADS  CAS  Google Scholar 

  • Rohling, E. J. et al. Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles. J. Clim. 25, 1635–1656 (2012)

    Article  ADS  Google Scholar 

  • Inglis, G. N. et al. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30, 1000–1020 (2015)

    Article  ADS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1–1535 (2013)

  • Crowell, J. C. & Frakes, L. A. Phanerozoic glaciation and the causes of ice ages. Am. J. Sci. 268, 193–224 (1970)

    Article  ADS  Google Scholar 

  • Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992)

    Article  ADS  CAS  Google Scholar 

  • Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011)

    Article  ADS  CAS  Google Scholar 

  • Zhang, Y. G. et al. A 40-million-year history of atmospheric CO2 . Phil. Trans. R. Soc. A 371, http://dx.doi.org/10.1098/rsta.2013.0096 (2013)

  • Franks, P. J. et al. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophys. Res. Lett. 41, http://dx.doi.org/10.1002/2014gl060457 (2014)

  • Lunt, D. J. et al. Warm climates of the past—a lesson for the future? Phil. Trans. R. Soc. A 371, http://dx.doi.org/10.1098/rsta.2013.0146 (2013)

  • Foster, G. L., Lear, C. H. & Rae, J. W. B. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet. Sci. Lett. 341–344, 243–254 (2012)

    Article  ADS  CAS  Google Scholar 

  • Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Demicco, R. V., Lowenstein, T. K. & Hardie, L. A. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology 31, 793–796 (2003)

    Article  ADS  CAS  Google Scholar 

  • John, E. H. et al. Warm ocean processes and carbon cycling in the Eocene. Phil. Trans. R. Soc. A 371, http://dx.doi.org/10.1098/rsta.2013.0099 (2013)

  • Martínez-Boti, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010)

    Article  ADS  CAS  Google Scholar 

  • Byrne, B. & Goldblatt, C. Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 41, 152–160 (2014)

    Article  ADS  CAS  Google Scholar 

  • PALAEOSENS Project Members. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012); erratum 494, 130 (2013)

  • Bohaty, S. M., Zachos, J. C., Florindo, F. & Delaney, M. L. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24, PA2207 (2009)

    Article  ADS  Google Scholar 

  • Nicholas, C. J. et al. Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene Kilwa Group, southern coastal Tanzania. J. Afr. Earth Sci. 45, 431–466 (2006)

    Article  ADS  Google Scholar 

  • Pearson, P. N. et al. Further Paleogene and Cretaceous sediment cores from the Kilwa area of coastal Tanzania: Tanzania Drilling Project Sites 6-10. J. Afr. Earth Sci. 45, 279–317 (2006)

    Article  ADS  Google Scholar 

  • Kent, P. E., Hunt, J. A. & Johnstone, D. W. The Geology and Geophysics of Coastal Tanzania. Geophys. Paper No. 6, 1–101 (Her Majesty’s Stationery Office, Inst. Geol. Sci, 1971)

  • Bown, P. R. et al. A Paleogene calcareous microfossil Konservat-Lagerstätte from the Kilwa Group of coastal Tanzania. Geol. Soc. Am. Bull. 120, 3–12 (2008)

    Article  ADS  Google Scholar 

  • Pearson, P. N. et al. Stable warm tropical climate through the Eocene Epoch. Geology 35, 211–214 (2007)

    Article  ADS  Google Scholar 

  • van Dongen, B. E. et al. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania. Org. Geochem. 37, 539–557 (2006)

    Article  CAS  Google Scholar 

  • Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. II 56, 554–577 (2009)

    Article  ADS  CAS  Google Scholar 

  • Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003)

    Article  ADS  CAS  Google Scholar 

  • Yu, J., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosys. 8, Q06016 (2007)

    Article  ADS  CAS  Google Scholar 

  • Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011)

    Article  ADS  CAS  Google Scholar 

  • Edgar, K. M., Anagnostou, E., Pearson, P. N. & Foster, G. L. Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochim. Cosmochim. Acta 166, 189–209 (2015)

    Article  ADS  CAS  Google Scholar 

  • Kim, S.-T. & O’Neil, J. R. Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461–3475 (1997)

    Article  ADS  CAS  Google Scholar 

  • Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. 116, C12023 (2011)

    Article  ADS  CAS  Google Scholar 

  • Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic marine temperatures. Paleoceanography 9, 353–387 (1994)

    Article  ADS  Google Scholar 

  • Pearson, P. N. in Reconstructing Earth's Deep Time Climate—The State of the Art in 2012 Vol. 18 (eds Ivany, L. C. & Huber, B. T. ) 1–38 (The Paleontological Society, 2012)

  • LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006)

    Article  ADS  CAS  Google Scholar 

  • Sexton, P. F., Wilson, P. A. & Pearson, P. N. Palaeoecology of late middle Eocene planktic foraminifera and evolutionary implications. Mar. Micropaleontol. 60, 1–16 (2006)

    Article  ADS  Google Scholar 

  • Pearson, P. N., Shackleton, N. J. & Hall, M. A. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP Site 523, South Atlantic. J. Foraminiferal Res. 23, 123–140 (1993)

    Article  Google Scholar 

  • Pearson, P. N. et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481–487 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Edgar, K. M. et al. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene Climatic Optimum. Geology 41, 15–18 (2013)

    Article  ADS  Google Scholar 

  • Birch, H. et al. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Mar. Micropaleontol. 101, 127–145 (2013)

    Article  ADS  Google Scholar 

  • Fairbanks, R. G. & Wiere, P. H. & Bé, A. W. H. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207, 61–63 (1980)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Spero, H. & Williams, D. F. Extracting environmental information from planktonic foraminiferal δ13C data. Nature 335, 717–719 (1988)

    Article  ADS  Google Scholar 

  • Berger, W. H., Killingley, J. S. & Vincent, E. Stable isotopes in deep-sea carbonates: Box Core ERDC-92, West Equatorial Pacific. Oceanol. Acta 1, 203–216 (1978)

    CAS  Google Scholar 

  • Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010)

    Article  ADS  CAS  Google Scholar 

  • Hönisch, B. et al. Atmospheric carbon dioxide concentration across the Mid-Pleistocene transition. Science 324, 1551–1554 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sanyal, A. & Bijma, J. A comparative study of the northwest Africa and eastern equatorial Pacific upwelling zones as sources of CO2 during glacial periods based on boron isotope paleo-pH estimation. Paleoceanography 14, 753–759 (1999)

    Article  ADS  Google Scholar 

  • Lemarchand, D., Gaillardet, J., Lewin, E. & Allegre, C. J. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408, 951–954 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11, Q08015 (2010)

    Article  ADS  CAS  Google Scholar 

  • Rink, S., Kühl, M., Bijma, J. & Spero, H. J. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131, 583–595 (1998)

    Article  Google Scholar 

  • Zeebe, R. E., Wolf-Gladrow, D. A., Bijma, J. & Hönisch, B. Vital effects in foraminifera do not compromise the use of δ11B as a paleo-pH indicator: evidence from modelling. Paleoceanography 18, 1043 (2003)

    Article  ADS  Google Scholar 

  • Sanyal, A. et al. Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. Paleoceanography 11, 513–517 (1996)

    Article  ADS  Google Scholar 

  • Sanyal, A., Bijma, J., Spero, H. & Lea, D. W. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: implications for the boron isotope paleo-pH proxy. Paleoceanography 16, 515–519 (2001)

    Article  ADS  Google Scholar 

  • Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364, 111–122 (2013)

    Article  ADS  CAS  Google Scholar 

  • Yu, J., Thornalley, D. J. R., Rae, J. W. B. & McCave, N. I. Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography 28, 237–252 (2013)

    Article  ADS  Google Scholar 

  • Kroon, D. & the Shipboard Scientific Party. Tropical Temperature History during Paleogene Global Warming (GLOW) Events. Netherlands Institute for Sea Research (NIOZ) Site Survey Cruise Report (RV Pelagia cruise number 64PE303) 1–151 (NIOZ, 2010)

  • McCorkle, D., Corliss, B. & Farnham, C. Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins. Deep Sea Res. I 44, 983–1024 (1997)

    Article  CAS  Google Scholar 

  • Penman, D. E. et al. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 2014PA002621 (2014)

    Article  Google Scholar 

  • Hönisch, B. & Hemming, N. G. Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects. Paleoceanography 19, PA4010 (2004)

    Article  ADS  Google Scholar 

  • Martínez-Boti, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hönisch, B. et al. The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. Mar. Micropaleontol. 49, 87–96 (2003)

    Article  ADS  Google Scholar 

  • Raitzsch, M. & Hönisch, B. Cenozoic boron isotope variations in benthic foraminifers. Geology 41, 591–594 (2013)

    Article  ADS  CAS  Google Scholar 

  • John, E. H., Wilson, D. J., Ridgwell, A. & Pearson, P. N. Temperature-dependent remineralization and carbon cycling in the warm Eocene oceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 413, 158–166 (2014)

    Article  Google Scholar 

  • Goyet, C., Healy, R. J. & Ryan, J. P. Global distribution of total inorganic carbon and total alkalinity below the deepest winter mixed layer depths. Report ORNL/CDIAC-127, NDP-076 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2000)

  • Key, R. M. et al. A global ocean carbon climatology: results from the Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004)

    Article  ADS  CAS  Google Scholar 

  • Battino, R., Rettich, T. R. & Tominaga, T. The solubility of oxygen and ozone in liquids. J. Phys. Chem. Ref. Data 12, 163–178 (1983)

    Article  ADS  CAS  Google Scholar 

  • Jenkins, W. J. & Goldman, J. C. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43, 465–491 (1985)

    Article  CAS  Google Scholar 

  • Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics 1–528 (Princeton Univ. Press, 2006)

  • Hull, P. M., Osborn, K. J., Norris, R. D. & Robinson, B. H. Seasonality and depth distribution of a mesopelagic foraminifer, Hastigerinella digitata, in Monterey Bay, California. Limnol. Oceanogr. 56, 562–576 (2011)

    Article  ADS  Google Scholar 

  • Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005)

    Article  ADS  CAS  Google Scholar 

  • Tyrrell, T. & Zeebe, R. E. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68, 3521–3530 (2004)

    Article  ADS  CAS  Google Scholar 

  • Coggon, R. M. et al. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–1117 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: implications for the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002)

    Article  ADS  CAS  Google Scholar 

  • Dickson, A. J. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298, 1222–1224 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lowenstein, T. K. et al. Oscillations in the Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086–1088 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wade, B. S. & Pearson, P. N. Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. Mar. Micropaleontol. 68, 244–255 (2008)

    Article  ADS  Google Scholar 

  • Huber, M. & Caballero, R. The early Eocene equable climate problem revisited. Clim. Past 7, 603–633 (2011)

    Article  Google Scholar 

  • Tindall, J. et al. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean-atmosphere GCM: implications for reconstructing early Eocene climate. Earth Planet. Sci. Lett. 292, 265–273 (2010)

    Article  ADS  CAS  Google Scholar 

  • Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011)

    Article  ADS  Google Scholar 

  • Ben-Yaakov, S. & Goldhaber, M. B. The influence of sea water composition on the apparent constants of the carbonate system. Deep-Sea Res. 20, 87–99 (1973)

    Google Scholar 

  • Millero, F. J. & Pierrot, D. A chemical equilibrium model for natural waters. Aquat. Geochem. 4, 153–199 (1998)

    Article  CAS  Google Scholar 

  • Hershey, J. P., Fernandez, M., Milne, P. J. & Millero, F. J. The ionization of boric acid in NaCl, Na-Ca-Cl and Na-Mg-Cl solutions at 25°C. Geochim. Cosmochim. Acta 50, 143–148 (1986)

    Article  ADS  CAS  Google Scholar