nature.com

Climate change drives expansion of Antarctic ice-free habitat - Nature

  • ️Terauds, Aleks
  • ️Wed Jun 28 2017

References

  1. Urban, M. C. Climate change. Accelerating extinction risk from climate change. Science 348, 571–573 (2015)

    ADS  CAS  PubMed  Google Scholar 

  2. Vaughan, D. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003)

    Google Scholar 

  3. Mulvaney, R. et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489, 141–144 (2012)

    ADS  CAS  PubMed  Google Scholar 

  4. Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016)

    ADS  CAS  PubMed  Google Scholar 

  5. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012)

    ADS  Google Scholar 

  6. Bracegirdle, T. J., Connolley, W. M. & Turner, J. Antarctic climate change over the twenty first century. J. Geophys. Res. Atmos. 113, DO3103 (2008)

    ADS  Google Scholar 

  7. Robinson, S. A. & Erickson, D. J. III . Not just about sunburn—the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Glob. Change Biol. 21, 515–527 (2015)

    ADS  Google Scholar 

  8. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. T. M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011)

    ADS  Google Scholar 

  9. Ligtenberg, S. R. M., Berg, W. J., Broeke, M. R., Rae, J. G. L. & Meijgaard, E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim. Dyn. 41, 867–884 (2013)

    Google Scholar 

  10. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016)

    ADS  CAS  PubMed  Google Scholar 

  11. Sutherland, W. J. et al. A horizon scan of global conservation issues for 2015. Trends Ecol. Evol. 30, 17–24 (2015)

    PubMed  Google Scholar 

  12. Convey, P. Terrestrial biodiversity in Antarctica – recent advances and future challenges. Polar Sci. 4, 135–147 (2010)

    ADS  Google Scholar 

  13. Convey, P. in Encyclopedia of Biodiversity 2nd edn (ed. Levin, S. A. ) 179–188 (Academic Press, 2013)

  14. Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014)

    Google Scholar 

  15. Burton-Johnson, A., Black, M., Fretwell, P. T. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10, 1665–1677 (2016)

    ADS  Google Scholar 

  16. Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers. Distrib. 22, 836–840 (2016)

    Google Scholar 

  17. Chown, S. L. & Convey, P. Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 2307–2331 (2007)

    PubMed  PubMed Central  Google Scholar 

  18. Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015)

    ADS  CAS  PubMed  Google Scholar 

  19. Convey, P. & Stevens, M. I. Ecology. Antarctic biodiversity. Science 317, 1877–1878 (2007)

    CAS  PubMed  Google Scholar 

  20. Collins, G. E. & Hogg, I. D. Temperature-related activity of Gomphiocephalus hodgsoni (Collembola) mitochondrial DNA (COI) haplotypes in Taylor Valley, Antarctica. Polar Biol. 39, 379–389 (2016)

    Google Scholar 

  21. Convey, P. et al. Exploring biological constraints on the glacial history of Antarctica. Quat. Sci. Rev. 28, 3035–3048 (2009)

    ADS  Google Scholar 

  22. Stevens, M. I ., Greenslade, P ., Hogg, I. D. & Sunnucks, P. Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol. Biol. Evol. 23, 874–882 (2006)

    CAS  PubMed  Google Scholar 

  23. Velasco-Castrillón, A., Gibson, J. E. & Stevens, M. A review of current Antarctic limno-terrestrial microfauna. Polar Biol. 37, 1517–1531 (2014)

    Google Scholar 

  24. Guidetti, R., Rebecchi, L., Cesari, M. & McInnes, S. J. Mopsechiniscus franciscae, a new species of a rare genus of Tardigrada from continental Antarctica. Polar Biol. 37, 1221–1233 (2014)

    Google Scholar 

  25. De Smet, W. H. & Gibson, J. A. E. Rhinoglena kutikovae n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. Polar Biol. 31, 595–603 (2008)

    Google Scholar 

  26. Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726–741 (2012)

    Google Scholar 

  27. Hughes, K., Pertierra, L., Molina-Montenegro, M. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers. Conserv. 24, 1031–1055 (2015)

    Google Scholar 

  28. Hogg, I. D. et al. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38, 3035–3040 (2006)

    CAS  Google Scholar 

  29. Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011)

    PubMed  Google Scholar 

  30. Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014)

    ADS  CAS  PubMed  Google Scholar 

  31. Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. (Amst.) 282, 104–115 (2003)

    ADS  Google Scholar 

  32. Braithwaite, R. J. & Raper, S. C. B. Glaciological conditions in seven contrasting regions estimated with the degree-day model. Ann. Glaciol. 46, 297–302 (2007)

    ADS  Google Scholar 

  33. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011)

    ADS  CAS  Google Scholar 

  34. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F . et al.) (IPCC, Cambridge Univ. Press, 2013)

  35. Hock, R., de Woul, M., Radic´, V. & Dyurgerov, M. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501 (2009)

    ADS  Google Scholar 

  36. Peters, G. P. et al. The challenge to keep global warming below 2°C. Nat. Clim. Change 3, 4–6 (2013)

    ADS  Google Scholar 

  37. Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009)

    Google Scholar 

  38. Rubidge, E. M. et al. Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat. Clim. Change 2, 285–288 (2012)

    ADS  Google Scholar 

  39. Olech, M. & Chwedorzewska, K. J. Short note: the first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarct. Sci. 23, 153–154 (2011)

    ADS  Google Scholar 

  40. Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl Acad. Sci. USA 109, 4938–4943 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Golledge, N. R., Everest, J. D., Bradwell, T. & Johnson, J. S. Lichenometry on Adelaide Island, Antarctic Peninsula: size-frequency studies, growth rates and snowpatches. Geogr. Ann. 92, 111–124 (2010)

    Google Scholar 

  42. Molina-Montenegro, M. A. et al. Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv. Biol. 26, 717–723 (2012)

    PubMed  Google Scholar 

  43. McGeoch, M. A., Shaw, J. D., Terauds, A., Lee, J. E. & Chown, S. L. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Glob. Environ. Change 32, 108–125 (2015)

    Google Scholar 

  44. Forcada, J. & Trathan, P. N. Penguin responses to climate change in the Southern Ocean. Glob. Change Biol. 15, 1618–1630 (2009)

    ADS  Google Scholar 

  45. Frenot, Y. et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol. Rev. Camb. Philos. Soc. 80, 45–72 (2005)

    PubMed  Google Scholar 

  46. van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010)

    PubMed  Google Scholar 

  47. Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010)

    ADS  Google Scholar 

  48. Kennicutt, M. C. I. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 27, 3–18 (2015)

    ADS  Google Scholar 

  49. Robinson, S. A., Wasley, J. & Tobin, A. K. Living on the edge – plants and global change in continental and maritime Antarctica. Glob. Change Biol. 9, 1681–1717 (2003)

    ADS  Google Scholar 

  50. United Nations Framework Convention on Climate Change. Conference of the Parties to the United Nations Framework Convention on Climate Change. (UNFCCC, 2015)

  51. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013)

    ADS  Google Scholar 

  52. Hock, R. Glacier melt: a review of processes and their modelling. Prog. Phys. Geogr. 29, 362–391 (2005)

    Google Scholar 

  53. Ebnet, A. F., Fountain, A. G., Nylen, T. H., McKnight, D. M. & Jaros, C. L. A temperature-index model of stream flow at below-freezing temperatures in Taylor Valley, Antarctica. Ann. Glaciol. 40, 76–82 (2005)

    ADS  Google Scholar 

  54. Hock, R. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol. 45, 101–111 (1999)

    ADS  Google Scholar 

  55. Hawes, T. C. Antarctica’s geological arks of life. J. Biogeogr. 42, 207–208 (2015)

    Google Scholar 

  56. Powers, J. G. et al. Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System (AMPS). Bull. Am. Meteorol. Soc. 84, 1533–1545 (2003)

    ADS  Google Scholar 

  57. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)

    ADS  Google Scholar 

  58. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012)

    ADS  Google Scholar 

  59. Van Lipzig, N. P. M., King, J. C., Lachlan-Cope, T. A. & Van den Broeke, M. R. Precipitation, sublimation and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J. Geophys. Res. 109, D24106 (2004)

    ADS  Google Scholar 

  60. Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367–376 (2016)

    ADS  Google Scholar 

  61. Bracegirdle, T. J. & Stephenson, D. B. Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Clim. Dyn. 39, 2805–2821 (2012)

    Google Scholar 

  62. Kumar, L., Skidmore, A. K. & Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 11, 475–497 (1997)

    Google Scholar 

  63. Barrand, N. E. et al. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. F: Earth Surf. 118, 315–330 (2013)

    ADS  Google Scholar 

  64. Rott, H., Rack, W., Skvarca, P. & De Angelis, H. Northern Larsen Ice Shelf, Antarctica: further retreat after collapse. Ann. Glaciol. 34, 277–282 (2002)

    ADS  Google Scholar 

  65. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012)

    ADS  CAS  PubMed  Google Scholar 

  66. Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica’s protected areas are inadequate, unrepresentative, and at risk. PLoS Biol. 12, e1001888 (2014)

    PubMed  PubMed Central  Google Scholar 

  67. Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl Acad. Sci. USA 111, 5634–5639 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2016)

Download references