nature.com

Historical claims and current interpretations of replicative aging - Nature Biotechnology

  • ️Shay, Jerry W.
  • ️Mon Jul 01 2002
  • Kirkwood, T.B. The nature and causes of ageing. Ciba Found. Symp. 134, 193–207 (1988).

    CAS  PubMed  Google Scholar 

  • Finch, C.E. Longevity, Senescence, and the Genome (University of Chicago Press, Chicago; 1990), p. 922.

    Google Scholar 

  • Bucala, R. & Cerami, A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv. Pharmacol. 23, 1–34 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein, B. & Kinzler, K.W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Shay, J.W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 5, 787–791 (1997).

    Article  Google Scholar 

  • Oikawa, S. & Kawanishi, S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 453, 365–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Dernberg, A.F., Sedat, J.W., Cande, W.Z., & Bass, H.W. Cytology of telomeres. in Telomeres (eds Blackburn, E.H. & Greider, C.W.) 295–338 (Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY; 1995).

    Google Scholar 

  • Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl. Acad. Sci. USA 98, 10308–10313 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson, M.P. & Klapper, W. Emerging roles for telomerase in neuronal development and apoptosis. J. Neurosci. Res. 63, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Klapper, W., Heidorn, K., Kuhne, K., Parwaresch, R. & Krupp, G. Telomerase activity in 'immortal' fish. FEBS Lett. 434, 409–412 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C.J. & DePinho, R.A. Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wright, W.E. & Shay, J.W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat. Med. 6, 849–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wright, W.E. & Shay, J.W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev. 11, 98–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, J.R., Wood, E., & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Mendrysa, S.M. & Perry, M.E. The p53 tumor suppressor protein does not regulate expression of its own inhibitor, MDM2, except under conditions of stress. Mol. Cell. Biol. 20, 2023–2230 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Harada, Y.N. et al. Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol. Cell Biol. 19, 2366–2372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Loo, D.T., Fuquay, J.I., Rawson, C.L. & Barnes, D.W. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236, 200–202 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Tang, D.G., Tokumoto, Y.M., Apperly, J.A., Lloyd, A.C. & Raff, M.C. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291, 868–871 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mathon, N.F., Malcolm, D.S., Harrisingh, M.C., Cheng, L. & Lloyd, A.C. Lack of replicative senescence in normal rodent glia. Science 291, 872–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Harley, C.B. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res. 256, 271–282 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Robles, S.J. & Adami, G.R. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Severino, J., Allen, R.G., Balin, S., Balin, A. & Cristofalo, V.J. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res. 257, 162–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q. & Ames, B.N. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl. Acad. Sci. USA 91, 4130–4134 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Woods, D., McMahon, M. & Bishop, J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri, G.P., Itahana, K., Acosta, M. & Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell. Biol. 20, 273–285 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drayton, S. & Peters, G. Immortalisation and transformation revisited. Curr. Opin. Genet. Dev. 12, 98–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shay, J.W. & Wright, W.E. Aging. When do telomeres matter? Science 291, 839–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Steinert, S., White, D.M., Zou, Y., Shay, J.W. & Wright, W.E. Telomere biology and cellular aging in nonhuman primate cells. Exp. Cell. Res. 272, 146–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M., Yang, L. & Hornsby, P.J. Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat. Biotechnol. 18, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Rubin, H. Cell aging in vivo and in vitro. Mech. Ageing Dev. 98, 1–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Rubin, H. Telomerase and cellular lifespan: ending the debate? Nat. Biotechnol. 16, 396–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Rubin, H. The relation between lifespan of a species and the number of doublings of its cells in culture is an unresolved issue. Mech. Ageing Dev. 100, 209–210 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Rubin, H. Multistage carcinogenesis in cell culture. Dev. Biol. 106, 61–66 (2001).

    CAS  Google Scholar 

  • Romanov, S.R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Jarrard, D.F. et al. p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. 59, 2957–2964 (1999).

    CAS  PubMed  Google Scholar 

  • Dickson, M.A. et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)- enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell Biol. 20, 1436–1447 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farwell, D.G. et al. Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. Am. J. Pathol. 156, 1537–1547 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez, R.D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15, 398–403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, H., Hammond, A.T. & Moses, R.E. The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp. Cell. Res. 217, 272–279 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Packer, L. & Fuehr, K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423–425 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Atamna, H., Paler-Martinez, A. & Ames, B.N. N-t-butyl hydroxylamine, a hydrolysis product of α-phenyl-N-t-butyl nitrone, is more potent in delaying senescence in human lung fibroblasts. J. Biol. Chem. 275, 6741–6748 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Cristofalo, V.J. Thymidine labelling index as a criterion of aging in vitro. Gerontology 22, 9–27 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, W.G., Richter, A., Evans, V.J. & Sanford, K.K. Influence of oxygen and pH on plating efficiency and colony development of WI-38 and Vero cells. Exp. Cell. Res. 86, 152–156 (1974).

    Article  CAS  PubMed  Google Scholar 

  • McKeehan, W.L. & Ham, R.G. Methods for reducing the serum requirement for growth in vitro of nontransformed diploid fibroblasts. Dev. Biol. Stand. 37, 97–98 (1976).

    CAS  PubMed  Google Scholar 

  • Wolf, N.S. & Pendergrass, W.R. The relationships of animal age and caloric intake to cellular replication in vivo and in vitro: a review. J. Gerontol. A Biol. Sci. Med. Sci. 54, B502–B517 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Schultz, E. & Lipton, B.H. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech. Ageing Dev. 20, 377–383 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.R. & Hayflick, L. Variation in the life-span of clones derived from human diploid cell strains. J. Cell. Biol. 62, 48–53 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, J.R. & Whitney, R.G. Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207, 82–84 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Martin, G.M., Sprague, C.A., Norwood, T.H. & Pendergrass, W.R. Clonal selection, attenuation and differentiation in an in vitro model of hyperplasia. Am. J. Pathol. 74, 137–154 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, J.R., Pereira-Smith, O.M. & Schneider, E.L. Colony size distributions as a measure of in vivo and in vitro aging. Proc. Natl. Acad. Sci. USA 75, 1353–1356 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley, C.B., Fletcher, A.B. & Greider, C.W. Telomeres shorten during aging. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Vaziri, H. et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52, 661–667 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shay, J.W., Wright, W.E., Brasiskyte, D. & Van der Haegen, B.A. E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407–1413 (1993).

    CAS  PubMed  Google Scholar 

  • Huffman, K.E., Levene, S.D., Tesmer, V.M., Shay, J.W. & Wright, W.E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem. 275, 19719–19722 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Shay, J.W., Werbin, H. & Wright, W.E. Telomeres and telomerase in human leukemias. Leukemia 10, 1255–1261 (1996).

    CAS  PubMed  Google Scholar 

  • Holt, S.E., Shay, J.W. & Wright, W.E. Refining the telomere–telomerase hypothesis of aging and cancer. Nat. Biotechnol. 14, 836–839 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Artandi, S.E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Lindsey, J., McGill, N.I., Lindsey, L.A., Green, D.K. & Cooke, H.J. In vivo loss of telomeric repeats with age in humans. Mutat. Res. 256, 45–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hiyama, E. et al. Telomerase activity in human intestine. Int. J. Oncol. 9, 453–458 (1996).

    CAS  PubMed  Google Scholar 

  • Iwama, H. et al. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum. Genet. 102, 397–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Suwa, T., Wright, W.E., Shay, J.W. & Hornsby, P.J. Telomere shortening and decline in replicative potential as a function of donor age in human adrenocortical cells. Mech. Ageing Dev. 122, 1685–1694 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Urano, Y. et al. Frequent p53 accumulation in the chronically sun-exposed epidermis and clonal expansion of p53 mutant cells in the epidermis adjacent to basal cell carcinoma. J. Invest. Dermatol. 104, 928–932 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T. & Lavker, R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Moog, F. The small intestine in old mice: growth, alkaline phosphatase and disaccharidase activities, and deposition of amyloid. Exp. Gerontol. 12, 223–235 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Potten, C.S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Cheshier, S.H., Morrison, S.J., Liao, X. & Weissman, I.L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford, G.B., Williams, B., Rossi, R. & Bertoncello, I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp. Hematol. 25, 445–453 (1997).

    CAS  PubMed  Google Scholar 

  • Mahmud, N. et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 97, 3061–3068 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Holt, S.E., Wright, W.E. & Shay, J.W. Multiple pathways for the regulation of telomerase activity. Eur. J. Cancer 33, 761–766 (1997).

    Article  CAS  PubMed  Google Scholar 

  • White, L.K., Wright, W.E. & Shay, J.W. Telomerase inhibitors. Trends Biotechnol. 19, 114–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Ray, A. & Runge, K.W. The yeast telomere length counting machinery is sensitive to sequences at the telomere–nontelomere junction. Mol. Cell. Biol. 19, 31–45 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert, B. et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA 96, 14276–14281 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn, E.H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Wang, H., Bishop, J.M. & Blackburn, E.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl. Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shay, J.W., Pereira-Smith, O.M. & Wright, W.E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Steinert, S., Shay, J.W. & Wright, W.E. Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem. Biophys. Res. Commun. 273, 1095–1098 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ouellette, M.M. et al. Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J. Biol. Chem. 275, 10072–10076 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Kha, H., Ungrin, M., Robinson, M.O. & Harrington, L. Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert. Proc. Natl. Acad. Sci. USA 99, 3597–3602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemann, M.T., Strong, M.A., Hao, L.Y. & Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Holt, S.E., Wright, W.E. & Shay, J.W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 16, 2932–2939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt, S.E., Aisner, D.L., Shay, J.W. & Wright, W.E. Lack of cell cycle regulation of telomerase activity in human cells. Proc. Natl. Acad. Sci. USA 94, 10687–10692 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diede, S.J. & Gottschling, D.E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99, 723–733 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Qi, H. & Zakian, V.A. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev. 14, 1777–1788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashima, K. et al. Expression of the RNA component of telomerase during human development and differentiation. Cell Growth Diff. 9, 805–813 (1998).

    CAS  PubMed  Google Scholar 

  • Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W. & Shay, J.W. Telomerase activity in human germline and embryonic tissues. Dev. Genet. 18, 173–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Forsyth, N.R., Wright, W.E. & Shay, J.W. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69, 188–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Decary, S. et al. Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul. Disord. 10, 113–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wright, W.E. Myoblast senescence in muscular dystrophy. Exp. Cell Res. 157, 343–354 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Blau, H.M., Webster, C. & Pavlath, G.K. Defective myoblasts identified in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 80, 4856–4860 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura, N. et al. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet. Cytogenet. 93, 56–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kitada, T., Seki, S., Kawakita, N., Kuroki, T. & Monna, T. Telomere shortening in chronic liver diseases. Biochem. Biophys. Res. Commun. 211, 33–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Urabe, Y. et al. Telomere length in human liver diseases. Liver 16, 293–297 (1996).

    Article  CAS  PubMed  Google Scholar