nature.com

A small molecule–kinase interaction map for clinical kinase inhibitors - Nature Biotechnology

  • ️Lockhart, David J
  • ️Sun Feb 13 2005
  • Dancey, J. & Sausville, E.A. Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev. Drug Discov. 2, 296–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. Protein kinases–the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sche, P.P., McKenzie, K.M., White, J.D. & Austin, D.J. Display cloning: functional identification of natural product receptors using cDNA-phage display. Chem. Biol. 6, 707–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Boehm, J. & Lee, J.C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717–726 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Godl, K. et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc. Natl. Acad. Sci. USA 100, 15434–15439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, L. et al. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol. 4, 311–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9, 268–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald, C.E. et al. Structural basis for p38alpha MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity. Nat. Struct. Biol. 10, 764–769 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Gray, N.S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Meggio, F. et al. Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur. J. Biochem. 234, 317–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Bennett, B.L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchdunger, E., Matter, A. & Druker, B.J. Bcr-Abl inhibition as a modality of CML therapeutics. Biochim. Biophys. Acta 1551, M11–M18 (2001).

    CAS  PubMed  Google Scholar 

  • Wakeling, A.E. et al. ZD1839 (gefitinib): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 62, 5749–5754 (2002).

    CAS  PubMed  Google Scholar 

  • Moyer, J.D. et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57, 4838–4848 (1997).

    CAS  PubMed  Google Scholar 

  • Allen, L.F., Lenehan, P.F., Eiseman, I.A., Elliott, W.L. & Fry, D.W. Potential benefits of the irreversible pan-erbB inhibitor, CI-1033, in the treatment of breast cancer. Semin. Oncol. 29, 11–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rusnak, D.W. et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 1, 85–94 (2001).

    CAS  PubMed  Google Scholar 

  • Torrance, C.J. et al. Combinatorial chemoprevention of intestinal neoplasia. Nat. Med. 6, 1024–1028 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wedge, S.R. et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 62, 4645–4655 (2002).

    CAS  PubMed  Google Scholar 

  • Wood, J.M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).

    CAS  PubMed  Google Scholar 

  • Kelly, L.M. et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 1, 421–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Vieth, M. et al. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta 1697, 243–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Druker, B.J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  • von Bubnoff, N., Schneller, F., Peschel, C. & Duyster, J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359, 487–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shah, N.P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gambacorti-Passerini, C.B. et al. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 4, 75–85 (2003).

    Article  PubMed  Google Scholar 

  • Shah, N.P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Branford, S. et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99, 3472–3475 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Azam, M., Latek, R.R. & Daley, G.Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112, 831–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Roumiantsev, S. et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc. Natl. Acad. Sci. USA 99, 10700–10705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warmuth, M. et al. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood 101, 664–672 (2003).

    Article  CAS  PubMed  Google Scholar 

  • La Rosee, P., Corbin, A.S., Stoffregen, E.P., Deininger, M.W. & Druker, B.J. Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (imatinib, STI571). Cancer Res. 62, 7149–7153 (2002).

    CAS  PubMed  Google Scholar 

  • Huron, D.R. et al. A novel pyridopyrimidine inhibitor of abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants. Clin. Cancer Res. 9, 1267–1273 (2003).

    CAS  PubMed  Google Scholar 

  • Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Nagar, B. et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 62, 4236–4243 (2002).

    CAS  PubMed  Google Scholar 

  • Goldberg, D.R. et al. Optimization of 2-phenylaminoimidazo[4,5-h]isoquinolin-9-ones: orally active inhibitors of lck kinase. J. Med. Chem. 46, 1337–1349 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mattiuzzi, G.N. et al. Development of Varicella-Zoster virus infection in patients with chronic myelogenous leukemia treated with imatinib mesylate. Clin. Cancer Res. 9, 976–980 (2003).

    CAS  PubMed  Google Scholar 

  • Dietz, A.B. et al. imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104, 1094–1099 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y. et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood 99, 1741–1744 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, T.J. et al. Novel agents in the treatment of lung cancer: conference summary statement. Clin. Cancer Res. 10, 4199s–4204s (2004).

    Article  PubMed  Google Scholar 

  • Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar