nature.com

Rapid activation of ATM on DNA flanking double-strand breaks - Nature Cell Biology

  • ️Hunter, Tony
  • ️Sun Oct 21 2007
  • Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  Google Scholar 

  • Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  • Bakkenist, C. J. & Kastan, M. B. Initiating cellular stress responses. Cell 118, 9–17 (2004).

    Article  CAS  Google Scholar 

  • Costanzo, V., Robertson, K. & Gautier, J. Xenopus cell-free extracts to study the DNA damage response. Methods Mol. Biol. 280, 213–227 (2004).

    CAS  PubMed  Google Scholar 

  • Petersen, P. et al. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Mol. Cell. Biol. 26, 1997–2011 (2006).

    Article  CAS  Google Scholar 

  • You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 25, 5363–5379 (2005).

    Article  CAS  Google Scholar 

  • Almouzni, G. & Mechali, M. Assembly of spaced chromatin involvement of ATP and DNA topoisomerase activity. EMBO J. 7, 4355–4365 (1988).

    Article  CAS  Google Scholar 

  • Ladoux, B. et al. Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy. Proc. Natl Acad. Sci. USA 97, 14251–14256 (2000).

    Article  CAS  Google Scholar 

  • Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  • Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443, 222–225 (2006).

    Article  CAS  Google Scholar 

  • Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nature Rev. Mol. Cell. Biol. 1, 179–186 (2000).

    Article  CAS  Google Scholar 

  • Johnson, S. A., You, Z. & Hunter, T. Monitoring ATM kinase activity in living cells. DNA Repair 6, 1277–1284 (2007).

    Article  CAS  Google Scholar 

  • Goodarzi, A. A. et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 23, 4451–4461 (2004).

    Article  CAS  Google Scholar 

  • Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol. 5, 255–260 (2003).

    Article  CAS  Google Scholar 

  • McSherry, T. D. & Mueller, P. R. Xenopus Cds1 is regulated by DNA-dependent protein kinase and ATR during the cell cycle checkpoint response to double-stranded DNA ends. Mol. Cell. Biol. 24, 9968–9985 (2004).

    Article  CAS  Google Scholar 

  • Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187–200 (2006).

    Article  CAS  Google Scholar 

  • Stucki, M. & Jackson, S. P. γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5, 534–543 (2006).

    Article  CAS  Google Scholar 

  • Cerosaletti, K., Wright, J. & Concannon, P. Active role for nibrin in the kinetics of atm activation. Mol. Cell. Biol. 26, 1691–1699 (2006).

    Article  CAS  Google Scholar 

  • Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biol. 7, 675–685 (2005).

    Article  CAS  Google Scholar 

  • Berkovich, E., Monnat, R. J. Jr. & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biol. 9, 683–690 (2007).

    Article  CAS  Google Scholar 

  • Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711 (2004).

    Article  CAS  Google Scholar 

  • Meek, K., Gupta, S., Ramsden, D. A. & Lees-Miller, S. P. The DNA-dependent protein kinase: the director at the end. Immunol. Rev. 200, 132–141 (2004).

    Article  CAS  Google Scholar 

  • Pazin, M. J., Bhargava, P., Geiduschek, E. P. & Kadonaga, J. T. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276, 809–812 (1997).

    Article  CAS  Google Scholar 

  • Dupré, A., Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nature Struct. Mol. Biol. 13, 451–457 (2006).

    Article  Google Scholar 

  • Robertson, K., Hensey, C. & Gautier, J. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene 18, 7070–7079 (1999).

    Article  CAS  Google Scholar 

  • Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  Google Scholar 

  • Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226 (2005).

    Article  CAS  Google Scholar 

  • You, Z., Kong, L. & Newport, J. The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J. Biol. Chem. 277, 27088–27093 (2002).

    Article  CAS  Google Scholar 

  • Hekmat-Nejad, M., You, Z., Yee, M. C., Newport, J. W. & Cimprich, K. A. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Curr. Biol. 10, 1565–1573 (2000).

    Article  CAS  Google Scholar 

  • Dilworth, S. M., Black, S. J. & Laskey, R. A. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell 51, 1009–1018 (1987).

    Article  CAS  Google Scholar 

  • Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

  • Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  Google Scholar 

  • Blow, J. J., Gillespie, P. J., Francis, D. & Jackson, D. A. Replication origins in Xenopus egg extract are 5–15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol. 152, 15–25 (2001).

    Article  CAS  Google Scholar 

  • Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998).

    Article  CAS  Google Scholar 

  • Sullivan, B. & Karpen, G. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol. 154, 683–690 (2001).

    Article  CAS  Google Scholar