nature.com

CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis - Nature Cell Biology

  • ️Nakayama, Keiichi I.
  • ️Sun Jan 18 2009
  • Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  • Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005).

    Article  CAS  Google Scholar 

  • Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  • Laptenko, O. & Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951–961 (2006).

    Article  CAS  Google Scholar 

  • Aylon, Y. & Oren, M. Living with p53, dying of p53. Cell 130, 597–600 (2007).

    Article  CAS  Google Scholar 

  • Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nature Rev. Cancer 6, 909–923 (2006).

    Article  CAS  Google Scholar 

  • Lavin, M. F. & Gueven, N. The complexity of p53 stabilization and activation. Cell Death Differ. 13, 941–950 (2006).

    Article  CAS  Google Scholar 

  • Zhang, Y. & Xiong, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910–1915 (2001).

    Article  CAS  Google Scholar 

  • Tanaka, T., Ohkubo, S., Tatsuno, I. & Prives, C. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130, 638–650 (2007).

    Article  CAS  Google Scholar 

  • Das, S. et al. Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130, 624–637 (2007).

    Article  CAS  Google Scholar 

  • Lee, D. et al. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J. Biol. Chem. 277, 22330–22337 (2002).

    Article  CAS  Google Scholar 

  • Kim, K. et al. Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J. Biol. Chem. 283, 9113–9126 (2008).

    Article  CAS  Google Scholar 

  • Becker, P. B. Nucleosome remodelers on track. Nature Struct. Mol. Biol. 12, 732–733 (2005).

    Article  CAS  Google Scholar 

  • Marfella, C. G. & Imbalzano, A. N. The Chd family of chromatin remodelers. Mutat. Res. 618, 30–40 (2007).

    Article  CAS  Google Scholar 

  • Hall, J. A. & Georgel, P. T. CHD proteins: a diverse family with strong ties. Biochem. Cell Biol. 85, 463–476 (2007).

    Article  CAS  Google Scholar 

  • Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005).

    Article  CAS  Google Scholar 

  • Zhang, L., Schroeder, S., Fong, N. & Bentley, D. L. Altered nucleosome occupancy and histone H3K4 methylation in response to 'transcriptional stress'. EMBO J. 24, 2379–2390 (2005).

    Article  CAS  Google Scholar 

  • Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    Article  CAS  Google Scholar 

  • Lusser, A., Urwin, D. L. & Kadonaga, J. T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nature Struct. Mol. Biol. 12, 160–166 (2005).

    Article  CAS  Google Scholar 

  • Sakamoto, I. et al. A novel β-catenin-binding protein inhibits β-catenin-dependent Tcf activation and axis formation. J. Biol. Chem. 275, 32871–32878 (2000).

    Article  CAS  Google Scholar 

  • Ishihara, K., Oshimura, M. & Nakao, M. CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol. Cell 23, 733–742 (2006).

    Article  CAS  Google Scholar 

  • Nishiyama, M. et al. Early embryonic death in mice lacking the β-catenin-binding protein Duplin. Mol. Cell. Biol. 24, 8386–8394 (2004).

    Article  CAS  Google Scholar 

  • Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

    Article  CAS  Google Scholar 

  • Funayama, R., Saito, M., Tanobe, H. & Ishikawa, F. Loss of linker histone H1 in cellular senescence. J. Cell Biol. 175, 869–880 (2006).

    Article  CAS  Google Scholar 

  • Vignali, M. & Workman, J. L. Location and function of linker histones. Nature Struct. Biol. 5, 1025–1028 (1998).

    Article  CAS  Google Scholar 

  • Thomas, J. O. Histone H1: location and role. Curr. Opin. Cell Biol. 11, 312–317 (1999).

    Article  CAS  Google Scholar 

  • Lusser, A. & Kadonaga, J. T. Strategies for the reconstitution of chromatin. Nature Methods 1, 19–26 (2004).

    Article  CAS  Google Scholar 

  • Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427 (1979).

    Article  CAS  Google Scholar 

  • Bednar, J. et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc. Natl Acad. Sci. USA 95, 14173–14178 (1998).

    Article  CAS  Google Scholar 

  • Pennings, S., Meersseman, G. & Bradbury, E. M. Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proc. Natl Acad. Sci. USA 91, 10275–10279 (1994).

    Article  CAS  Google Scholar 

  • Shimamura, A., Sapp, M., Rodriguez-Campos, A. & Worcel, A. Histone H1 represses transcription from minichromosomes assembled in vitro. Mol. Cell. Biol. 9, 5573–5584 (1989).

    Article  CAS  Google Scholar 

  • Laybourn, P. J. & Kadonaga, J. T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254, 238–245 (1991).

    Article  CAS  Google Scholar 

  • Shen, X., Yu, L., Weir, J. W. & Gorovsky, M. A. Linker histones are not essential and affect chromatin condensation in vivo. Cell 82, 47–56 (1995).

    Article  CAS  Google Scholar 

  • Ushinsky, S. C. et al. Histone H1 in Saccharomyces cerevisiae. Yeast 13, 151–161 (1997).

    Article  CAS  Google Scholar 

  • Patterton, H. G., Landel, C. C., Landsman, D., Peterson, C. L. & Simpson, R. T. The biochemical and phenotypic characterization of Hho1p, the putative linker histone H1 of Saccharomyces cerevisiae. J. Biol. Chem. 273, 7268–7276 (1998).

    Article  CAS  Google Scholar 

  • Ramon, A., Muro-Pastor, M. I., Scazzocchio, C. & Gonzalez, R. Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Mol. Microbiol. 35, 223–233 (2000).

    Article  CAS  Google Scholar 

  • Rupp, R. A. & Becker, P. B. Gene regulation by histone H1: new links to DNA methylation. Cell 123, 1178–1179 (2005).

    Article  CAS  Google Scholar 

  • Wang, S. & El-Deiry, W. S. p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res. 66, 6982–6989 (2006).

    Article  CAS  Google Scholar 

  • Takagi, M., Absalon, M. J., McLure, K. G. & Kastan, M. B. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123, 49–63 (2005).

    Article  CAS  Google Scholar 

  • Zahir, F. et al. Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children. J. Med. Genet. 44, 556–561 (2007).

    Article  CAS  Google Scholar 

  • Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  Google Scholar 

  • Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).

    Article  CAS  Google Scholar 

  • Kamura, T. et al. VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev. 18, 3055–3065 (2004).

    Article  CAS  Google Scholar 

  • Natsume, T. et al. A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics. Anal. Chem. 74, 4725–4733 (2002).

    Article  CAS  Google Scholar 

  • Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  Google Scholar