nature.com

Active Wnt proteins are secreted on exosomes - Nature Cell Biology

  • ️Boutros, Michael
  • ️Sun Sep 16 2012
  • Neumann, C. J. & Cohen, S. M. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124, 871–880 (1997).

    CAS  PubMed  Google Scholar 

  • Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bartscherer, K. & Boutros, M. Regulation of Wnt protein secretion and its role in gradient formation. EMBO Rep. 9, 977–982 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Port, F. & Basler, K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 11, 1265–1271 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Doubravska, L. et al. Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling. Cell Signal. 23, 837–848 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Buechling, T., Chaudhary, V., Spirohn, K., Weiss, M. & Boutros, M. p24 proteins are required for secretion of Wnt ligands. EMBO Rep. 12, 1265–1272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Port, F., Hausmann, G. & Basler, K. A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion. EMBO Rep. 12, 1144–1152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bänziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).

    Article  PubMed  Google Scholar 

  • Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Goodman, R. M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Franch-Marro, X., Wendler, F., Griffith, J., Maurice, M. M. & Vincent, J-P. In vivo role of lipid adducts on Wingless. J. Cell Sci. 121, 1587–1592 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Herr, P. & Basler, K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361, 392–402 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Belenkaya, T. Y. et al. The retromer complex influences Wnt secretion byrecycling wntless from endosomes to the trans-Golgi network. Dev. Cell 14, 120–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Franch-Marro, X. et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat. Cell Biol. 10, 170–177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Port, F. et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat. Cell Biol. 10, 178–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Pan, C. L. et al. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev. Cell 14, 132–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yang, P. T. et al. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14, 140–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Harterink, M. et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat. Cell Biol. 13, 1–12 (2011).

    Article  Google Scholar 

  • Zhang, P., Wu, Y., Belenkaya, T. Y. & Lin, X. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res. 21, 1677–1690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs, G. S. et al. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J. Cell Sci. 123, 3357–3367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Neumann, S. et al. Mammalian Wnt3a is released on lipoprotein particles. Traffic 10, 334–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Panáková, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoproteinparticles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    Article  PubMed  Google Scholar 

  • Mulligan, K. A. et al. Secreted wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl Acad. Sci. USA 109, 370–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Taelman, V. F. et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143, 1136–1148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkut, C. et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139, 393–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koles, K. et al. Mechanism of Evi-exosome release at synaptic boutons. J. Biol. Chem. 20, 16820–16834 (2012).

    Article  Google Scholar 

  • Théry, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22. (2006).

  • Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Laulagnier, K. et al. Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids. Blood Cells Mol. Dis. 35, 116–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Stoeck, A. et al. A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem. J. 393, 609–618 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foreman, J. R. et al. Fractionation of human serum lipoproteins by single-spin gradient ultracentrifugation: quantification of apolipoproteins B and A-1 and lipid components. J. Lipid Res. 18, 759–767 (1977).

    CAS  PubMed  Google Scholar 

  • Gutwein, P. et al. Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin. Cancer Res. 11, 2492–2501 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Koppen, T. et al. Proteomics analyses of Microvesicles released by Drosophila Kc167 and S2 cells. Proteomics 22, 4397–4410 (2011).

    Article  Google Scholar 

  • Rana, S. & Zoller, M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem. Soc. Trans. 39, 559–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamai, K. et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem. Biophys. Res. Commun. 399, 384–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sobota, J. A., Back, N., Eipper, B. A. & Mains, R. E. Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J. Cell Sci. 122, 3542–3553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Carayon, K. et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J. Biol. Chem. 286, 34426–34439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons, M. & Raposo, G. Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Vidal, M. J. & Stahl, P. D. The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation. Eur. J. Cell Biol. 60, 261–267 (1993).

    CAS  PubMed  Google Scholar 

  • Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 11–13 (2010).

    Article  Google Scholar 

  • McNew, J. A. et al. Ykt6p, a prenylated SNARE essential for endoplasmic reticulum-Golgi transport. J. Biol. Chem. 272, 17776–17783 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Nair, U. et al. SNARE proteins are required for macroautophagy. Cell 146, 290–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higginbotham, J. N. et al. Amphiregulin exosomes increase cancer cell invasion. Curr. Biol. 21, 779–786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckes, D. G. Jr et al. Human tumor virus utilizes exosomes for intercellular communication. Proc. Natl Acad. Sci. USA 107, 20370–20375 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2010).

    Article  Google Scholar 

  • Havel, R. J., Eder, H. A. & Bragdon, J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiringer, C. T., Auffarth, K., Hou, H. & Ungermann, C. Depalmitoylation of Ykt6 prevents its entry into the multivesicular body pathway. Traffic 9, 1510–1521 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tai, G. et al. Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network. Mol. Biol. Cell 15, 4011–4022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons, V. et al. Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol. 6, e214 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nothwehr, S.F., Ha, S.A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strochlic, T. I., Setty, T. G., Sitaram, A. & Burd, C. G. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115–125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voos, W. & Stevens, T.H. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J. Cell Biol. 140, 577–590 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin, I. et al. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis. EMBO Mol. Med. 4, 38–51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolo, R., Abbott, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Vaccari, T., Duchi, S., Cortese, K., Tacchetti, C. & Bilder, D. The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development 137, 1825–1832 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. H., Elia, N., Ghirlando, R., Lippincott-Schwartz, J. & Hurley, J. H. Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322, 576–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jullien, J. & Gurdon, J. Morphogen gradient interpretation by a regulated trafficking step during ligand-receptor transduction. Gen. Dev. 19, 2682–2694 (2005).

    Article  CAS  Google Scholar 

  • Horn, T. & Boutros, M. E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update. Nucleic Acids Res. 38, W332-339 (2010).

    Article  Google Scholar 

  • Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Gen. Biol. 7, R100 (2006).

    Article  Google Scholar 

  • Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Slot, J. W. & Geuze, H. J. Cryosectioning and immunolabeling. Nat. Protoc. 2, 2480–2491 (2007).

    Article  CAS  PubMed  Google Scholar