nature.com

Malleable machines take shape in eukaryotic transcriptional regulation - Nature Chemical Biology

  • ️Asturias, Francisco J
  • ️Thu Nov 13 2008
  • Sigler, P.B. Transcriptional activation. Acid blobs and negative noodles. Nature 333, 210–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Ansari, A.Z., Reece, R.J. & Ptashne, M. A transcriptional activating region with two contrasting modes of protein interaction. Proc. Natl. Acad. Sci. USA 95, 13543–13548 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C. & Brown, C.J. Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11, 161–171 (2000).

    CAS  PubMed  Google Scholar 

  • Asturias, F.J. Another piece in the transcription initiation puzzle. Nat. Struct. Mol. Biol. 11, 1031–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Romero, P. et al. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. 3, 437–448 (1998).

    Google Scholar 

  • Tompa, P. & Fuxreiter, M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wright, P.E. & Dyson, H.J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sickmeier, M. et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 35, D786–D793 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Flaugh, S.L. & Lumb, K.J. Effects of macromolecular crowding on the intrinsically disordered proteins c-Fos and p27(Kip1). Biomacromolecules 2, 538–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  • McNulty, B.C., Young, G.B. & Pielak, G.J. Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. J. Mol. Biol. 355, 893–897 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Demarest, S.J. et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy, E.R. et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol. 11, 358–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Adams, V.H., McBryant, S.J., Wade, P.A., Woodcock, C.L. & Hansen, J.C. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. J. Biol. Chem. 282, 15057–15064 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Uversky, V.N., Gillespie, J.R. & Fink, A.L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41, 415–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tompa, P. Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25, 847–855 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hansen, J.C., Lu, X., Ross, E.D. & Woody, R.W. Intrinsic protein disorder, amino acid composition, and histone terminal domains. J. Biol. Chem. 281, 1853–1856 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Dunker, A.K. et al. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac. Symp. Biocomput. 3, 473–484 (1998).

    Google Scholar 

  • Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Tompa, P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579, 3346–3354 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Denning, D.P., Patel, S.S., Uversky, V., Fink, A.L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. USA 100, 2450–2455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. & Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Goodman, R.H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tompa, P. & Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169–1175 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pierce, M.M., Baxa, U., Steven, A.C., Bax, A. & Wickner, R.B. Is the prion domain of soluble Ure2p unstructured? Biochemistry 44, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Uversky, V.N., Oldfield, C.J. & Dunker, A.K. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18, 343–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Dyson, H.J. & Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Fuxreiter, M., Simon, I., Friedrich, P. & Tompa, P. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. et al. Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426–29432 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, C.J. et al. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454–12470 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Csizmok, V. et al. Primary contact sites in intrinsically unstructured proteins: the case of calpastatin and microtubule-associated protein 2. Biochemistry 44, 3955–3964 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Neduva, V. & Russell, R.B. Linear motifs: evolutionary interaction switches. FEBS Lett. 579, 3342–3345 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Fuxreiter, M., Tompa, P. & Simon, I. Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23, 950–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Iakoucheva, L.M. et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, C.J. et al. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett. 527, 303–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker, B.A., Portman, J.J. & Wolynes, P.G. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. USA 97, 8868–8873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield, C.J. et al. Flexible nets: disorder and induced fit in the associations of p53 and 14–3-3 with their partners. BMC Genomics 9 (suppl. 1), S1 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tompa, P., Szasz, C. & Buday, L. Structural disorder throws new light on moonlighting. Trends Biochem. Sci. 30, 484–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Reeves, R. & Beckerbauer, L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim. Biophys. Acta 1519, 13–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Tjian, R. & Maniatis, T. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5–8 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kostek, S.A. et al. Molecular architecture and conformational flexibility of human RNA polymerase II. Structure 14, 1691–1700 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hansen, J.C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Hansen, J.C., Tse, C. & Wolffe, A.P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37, 17637–17641 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Ruthenburg, A.J., Li, H., Patel, D.J. & Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier, C.R., Langst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, H. et al. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol. Cell 8, 531–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Fazzio, T.G., Gelbart, M.E. & Tsukiyama, T. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Mol. Cell. Biol. 25, 9165–9174 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, H., Flaus, A. & Owen-Hughes, T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J. Mol. Biol. 374, 563–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Baneres, J.L., Martin, A. & Parello, J. The N tails of histones H3 and H4 adopt a highly structured conformation in the nucleosome. J. Mol. Biol. 273, 503–508 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Hartlepp, K.F. et al. The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA interactions. Mol. Cell. Biol. 25, 9886–9896 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamiche, A., Kang, J.G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl. Acad. Sci. USA 98, 14316–14321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, C.L., Horowitz-Scherer, R., Flanagan, J.F., Woodcock, C.L. & Peterson, C.L. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat. Struct. Biol. 10, 141–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wu, P.Y., Ruhlmann, C., Winston, F. & Schultz, P. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell 15, 199–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Huth, J.R. et al. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat. Struct. Biol. 4, 657–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hope, I.A., Mahadevan, S. & Struhl, K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature 333, 635–640 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Cress, W.D. & Triezenberg, S.J. Critical structural elements of the VP16 transcriptional activation domain. Science 251, 87–90 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Drysdale, C.M. et al. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell. Biol. 15, 1220–1233 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, K.P. et al. Multiple aromatic side chains within a disordered structure are critical for transcription and transforming activity of EWS family oncoproteins. Proc. Natl. Acad. Sci. USA 104, 479–484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugase, K., Dyson, H.J. & Wright, P.E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, M.E. et al. Mechanism of transcription factor recruitment by acidic activators. J. Biol. Chem. 280, 21779–21784 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zitzewitz, J.A., Ibarra-Molero, B., Fishel, D.R., Terry, K.L. & Matthews, C.R. Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J. Mol. Biol. 296, 1105–1116 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Spolar, R.S. & Record, M.T. Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994); comment 263, 769–770 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Dames, S.A., Martinez-Yamout, M., De Guzman, R.N., Dyson, H.J. & Wright, P.E. Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc. Natl. Acad. Sci. USA 99, 5271–5276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Guzman, R.N., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsically unstructured ligands for non-identical binding sites. J. Biol. Chem. 279, 3042–3049 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mujtaba, S. et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell 13, 251–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741–752 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Heery, D.M., Kalkhoven, E., Hoare, S. & Parker, M.G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Girdwood, D. et al. P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Black, J.C., Choi, J.E., Lombardo, S.R. & Carey, M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol. Cell 23, 809–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kornberg, R.D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Thompson, P.R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Myers, L.C., Gustafsson, C.M., Hayashibara, K.C., Brown, P.O. & Kornberg, R.D. Mediator protein mutations that selectively abolish activated transcription. Proc. Natl. Acad. Sci. USA 96, 67–72 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asturias, F.J., Jiang, Y.W., Myers, L.C., Gustafsson, C.M. & Kornberg, R.D. Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283, 985–987 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Taatjes, D.J., Naar, A.M., Andel, F. III, Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Taatjes, D.J., Schneider-Poetsch, T. & Tjian, R. Distinct conformational states of nuclear receptor-bound CRSP-Med complexes. Nat. Struct. Mol. Biol. 11, 664–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chadick, J.Z. & Asturias, F.J. Structure of eukaryotic Mediator complexes. Trends Biochem. Sci. 30, 264–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Elmlund, H. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl. Acad. Sci. USA 103, 15788–15793 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth-Petróczy, A. et al. Malleable machines in transcription regulation: the Mediator complex. PLoS Comput. Biol. (in the press).

  • Takagi, Y. et al. Head module control of mediator interactions. Mol. Cell 23, 355–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lariviere, L. et al. Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. Nat. Struct. Mol. Biol. 13, 895–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  • van de Peppel, J. et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol. Cell 19, 511–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Corden, J.L. Tails of RNA polymerase II. Trends Biochem. Sci. 15, 383–387 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Fabrega, C., Shen, V., Shuman, S. & Lima, C.D. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell 11, 1549–1561 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Bushnell, D.A., Westover, K.D., Davis, R.E. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303, 983–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chen, H.T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119, 169–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chung, W.H. et al. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol. Cell 12, 1003–1013 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yong, C. et al. Structure of the human transcription factor TFIIF revealed by limited proteolysis with trypsin. FEBS Lett. 435, 191–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Brown, C.J. et al. Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55, 104–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Zor, T., De Guzman, R.N., Dyson, H.J. & Wright, P.E. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J. Mol. Biol. 337, 521–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lu, X. & Hansen, J.C. Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J. Biol. Chem. 279, 8701–8707 (2004).

    Article  CAS  PubMed  Google Scholar 

  • McBryant, S.J., Krause, C. & Hansen, J.C. Domain organization and quaternary structure of the Saccharomyces cerevisiae silent information regulator 3 protein, Sir3p. Biochemistry 45, 15941–15948 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Szollosi, E. et al. Intrinsic structural disorder of DF31, a Drosophila protein of chromatin decondensation and remodeling activities. J. Proteome Res. 7, 2291–2299 (2008).

    Article  PubMed  Google Scholar 

  • Radhakrishnan, I., Perez-Alvarado, G.C., Dyson, H.J. & Wright, P.E. Conformational preferences in the Ser133-phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Lett. 430, 317–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Hon, W.C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640–649 (2000).

    Article  CAS  PubMed  Google Scholar