Greenland meltwater storage in firn limited by near-surface ice formation - Nature Climate Change
- ️van de Wal, Roderik S. W.
- ️Mon Jan 04 2016
- Letter
- Published: 04 January 2016
Nature Climate Change volume 6, pages 390–393 (2016)Cite this article
-
5232 Accesses
-
551 Altmetric
Subjects
Abstract
Approximately half of Greenland’s current annual mass loss is attributed to runoff from surface melt1. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn2. Two recent studies suggest that all3 or most3,4 of Greenland’s firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come3. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs 5,6), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ∼1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient7 surface discharge system and intensifying ice sheet mass loss earlier than previously suggested3.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
van den Broeke, M. et al. Partitioning recent Greenland mass loss. Science 326, 984–986 (2009).
Pfeffer, W., Meier, M. & Illangasekare, T. H. Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res. 96, 22117–22124 (1991).
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J. & Fettweis, X. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature 491, 240–243 (2012).
vanAngelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., Fettweis, X. & van Meijgaard, E. Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophys. Res. Lett. 40, 2109–2113 (2013).
Nghiem, S. V. et al. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012).
van As, D. et al. Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations. Cryosphere 6, 199–209 (2012).
Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).
Herron, M. & Langway, J. C. Firn densification: an empirical model. J. Glaciol. 25, 373–385 (1980).
Brown, J., Harper, J., Pfeffer, W., Humphrey, N. F. & Bradford, J. High resolution study of layering within the percolation and soaked facies of the Greenland ice sheet. Ann. Glaciol. 52, 35–41 (2011).
Colbeck, S. C. A study of glacier flow for an open-pit mine: an exercise in applied glaciology. J. Glaciol. 13, 401–414 (1974).
Forster, R. R. et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geosci. 7, 95–98 (2013).
Benson, C. S. Stratigraphic Studies in the Snow and Firn of the Greenland Ice Sheet Res. Rep. 70, reprint (US Army Corps of Engineers, Snow, Ice and Permafrost Research Establishment, 1996).
Pfeffer, W. & Humphrey, N. F. Formation of ice layers by infiltration and refreezing of meltwater. Ann. Glaciol. 26, 83–91 (1998).
Humphrey, N. F., Harper, J. T. & Pfeffer, W. T. Thermal tracking of meltwater retention in Greenland’s accumulation area. J. Geophys. Res. 117, F01010 (2012).
Van de Wal, R. S. W. et al. Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth Syst. Sci. Data 4, 31–35 (2012).
Mosley-Thompson, E. et al. Local to regional-scale variability of annual net accumulation on the Greenland ice sheet from PARCA cores. J. Geophys. Res. 106, 33839–33851 (2001).
Tedesco, M. et al. Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere 7, 615–630 (2013).
Koenig, L. S., Miège, C., Forster, R. R. & Brucker, L. Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophys. Res. Lett. 41, 81–85 (2014).
Bezeau, P., Sharp, M., Burgess, D. & Gascon, G. Firn profile changes in response to extreme 21st-century melting at Devon Ice Cap, Nunavut, Canada. J. Glaciol. 59, 981–991 (2013).
Zdanowicz, C. et al. Summer melt rates on Penny Ice Cap, Baffin Island: past and recent trends and implications for regional climate. J. Geophys. Res. 117, F02006 (2012).
Gascon, G., Sharp, M. J., Burgess, D. O., Bezeau, P. & Bush, A. Changes in accumulation area firn stratigraphy and meltwater flow during a period of climate warming, Devon Ice Cap, Nunavut, Canada. J. Geophys. Res. 118, 2380–2391 (2013).
de la Peña, S. et al. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming. Cryosphere 9, 1203–1211 (2015).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
McGrath, D., Colgan, W., Bayou, N., Muto, A. & Steffen, K. Recent warming at summit, Greenland: global context and implications. Geophys. Res. Lett. 40, 2091–2096 (2013).
Liang, Y. et al. A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sens. Environ. 123, 127–138 (2012).
Howat, I. M., Negrete, A. & Smith, B. E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).
Lindbäck, K. et al. Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys. Res. Lett. 42, 7606–7614 (2015).
Machguth, H., Purves, R. S., Oerlemans, J., Hölzle, M. & Paul, F. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation. Cryosphere 2, 191–204 (2008).
Kameda, T. et al. Melt features in ice cores from Site J, southern Greenland: some implications for summer climate since AD 1550. Ann. Glaciol. 21, 51–58 (1995).
Acknowledgements
This work is supported by the US National Aeronautics and Space Administration (NASA) Grant no. NNX10AR76G, ‘Comprehensive Assessment of Ice Sheet Contributions to Sea Level Based on Integrated Remote Sensing Observations’, by the Greenland Analogue Project (GAP), funded by Svensk Kärnbränslehantering AB, Sweden, Posiva Oy, Finland, and NWMO, Canada, the Refreeze Project funded by GEUS, the RETAIN project, funded by the Danish Council for Independent research (Grant no. 4002-00234) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), funded by The Danish Energy Agency DANCEA programme. Collection and analyses of the legacy cores was supported by NASA’s PARCA Program. The K-transect programme has been funded by Utrecht University, the Netherlands Polar Program of NWO/ALW and a Spinoza grant. This publication is contribution number 62 of the Nordic Centre of Excellence SVALI, ‘Stability and Variations of Arctic Land Ice’, funded by the Nordic Top-level Research Initiative (TRI). The authors acknowledge field assistance by K. Alley, A. Crawford, S. Doyle, M. Eijkelboom, S. Grigsby, D. Hill, A. Heilig, A. Hubbard, K. Lindbäck, R. Petterson and M. Stevens as well as logistical contributions from W. Abdalati, R. Bauer, A. Hubbard and T. Scambos. Satellite imagery in Supplementary Fig. 1 is subject to copyright by European Space Imaging/DigitalGlobe.
Author information
Author notes
Horst Machguth
Present address: Present address: Department of Geography, University of Zurich, 8057 Zurich, Switzerland.,
Authors and Affiliations
Geological Survey of Denmark and Greenland GEUS, 1350 København K, Denmark
Horst Machguth, Dirk van As, Jason E. Box, Charalampos Charalampidis, William Colgan & Robert S. Fausto
Arctic Technology Centre ARTEK, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Horst Machguth
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, Colorado 80309, USA
Mike MacFerrin
Department of Earth Sciences, Uppsala University, 752 36 Uppsala, Sweden
Charalampos Charalampidis
Department of Earth and Space Science and Engineering, York University, Toronto, Ontario M3J 1P3, Canada
William Colgan
Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, 9747AG Groningen, The Netherlands
Harro A. J. Meijer
Byrd Polar and Climate Research Center and Department of Geography, The Ohio State University, Columbus, Ohio 43210, USA
Ellen Mosley-Thompson
Institute for Marine and Atmospheric Research Utrecht (IMAU), University of Utrecht, 3584CC Utrecht, The Netherlands
Roderik S. W. van de Wal
Authors
- Horst Machguth
You can also search for this author in PubMed Google Scholar
- Mike MacFerrin
You can also search for this author in PubMed Google Scholar
- Dirk van As
You can also search for this author in PubMed Google Scholar
- Jason E. Box
You can also search for this author in PubMed Google Scholar
- Charalampos Charalampidis
You can also search for this author in PubMed Google Scholar
- William Colgan
You can also search for this author in PubMed Google Scholar
- Robert S. Fausto
You can also search for this author in PubMed Google Scholar
- Harro A. J. Meijer
You can also search for this author in PubMed Google Scholar
- Ellen Mosley-Thompson
You can also search for this author in PubMed Google Scholar
- Roderik S. W. van de Wal
You can also search for this author in PubMed Google Scholar
Contributions
H.M. conceived the study; M.M., D.v.A. and H.M. collaboratively designed and planned the field campaigns in which M.M., H.M., D.v.A., C.C. and W.C. participated; H.M., M.M., D.v.A., J.E.B., C.C., W.C., R.S.F. and E.M.-T. performed the data analysis; E.M.-T., R.S.W.v.d.W. and H.A.J.M. prepared and provided additional data. H.M. and M.M. wrote the manuscript; all authors continuously discussed the results and developed the analysis further.
Corresponding author
Correspondence to Horst Machguth.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Machguth, H., MacFerrin, M., van As, D. et al. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Clim Change 6, 390–393 (2016). https://doi.org/10.1038/nclimate2899
Received: 07 April 2015
Accepted: 17 November 2015
Published: 04 January 2016
Issue Date: April 2016
DOI: https://doi.org/10.1038/nclimate2899