nature.com

Risk of psychiatric illness from advanced paternal age is not predominantly from de novo mutations - Nature Genetics

  • ️Goddard, Michael E
  • ️Mon May 23 2016
  • Frans, E.M. et al. Autism risk across generations: a population-based study of advancing grandpaternal and paternal age. JAMA Psychiatry 70, 516–521 (2013).

    Article  Google Scholar 

  • Hultman, C.M., Sandin, S., Levine, S.Z., Lichtenstein, P. & Reichenberg, A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol. Psychiatry 16, 1203–1212 (2011).

    Article  CAS  Google Scholar 

  • Malaspina, D. et al. Advancing paternal age and the risk of schizophrenia. Arch. Gen. Psychiatry 58, 361–367 (2001).

    Article  CAS  Google Scholar 

  • Pedersen, C.B., McGrath, J., Mortensen, P.B. & Petersen, L. The importance of father's age to schizophrenia risk. Mol. Psychiatry 19, 530–531 (2014).

    Article  CAS  Google Scholar 

  • Petersen, L., Mortensen, P.B. & Pedersen, C.B. Paternal age at birth of first child and risk of schizophrenia. Am. J. Psychiatry 168, 82–88 (2011).

    Article  Google Scholar 

  • McGrath, J.J. et al. A comprehensive assessment of parental age and psychiatric disorders. JAMA Psychiatry 71, 301–309 (2014).

    Article  Google Scholar 

  • Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  Google Scholar 

  • Malaspina, D. et al. Schizophrenia risk and paternal age: a potential role for de novo mutations in schizophrenia vulnerability genes. CNS Spectr. 7, 26–29 (2002).

    Article  Google Scholar 

  • Weinberg, W. Zur Vererbung des Zwergwuchses. Arch. Rass. Gesamte Biol. 9, 710–718 (1912).

    Google Scholar 

  • Crow, J.F. The high spontaneous mutation rate: is it a health risk? Proc. Natl. Acad. Sci. USA 94, 8380–8386 (1997).

    Article  CAS  Google Scholar 

  • Haldane, J.B.S. The mutation rate of the gene for haemophilia, and its segregation ratios in males and females. Ann. Eugen. 13, 262–271 (1947).

    Article  CAS  Google Scholar 

  • Vogel, F. & Rathenberg, R. Spontaneous mutation in man. Adv. Hum. Genet. 5, 223–318 (1975).

    Article  CAS  Google Scholar 

  • Crow, J.F. The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1, 40–47 (2000).

    Article  CAS  Google Scholar 

  • Michaelson, J.J. et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442 (2012).

    Article  CAS  Google Scholar 

  • Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  Google Scholar 

  • Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  Google Scholar 

  • O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  Google Scholar 

  • Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  Google Scholar 

  • MacArthur, J.A. et al. The rate of nonallelic homologous recombination in males is highly variable, correlated between monozygotic twins and independent of age. PLoS Genet. 10, e1004195 (2014).

    Article  Google Scholar 

  • Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    Article  CAS  Google Scholar 

  • Miller, B. et al. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr. Bull. 37, 1039–1047 (2011).

    Article  Google Scholar 

  • Mehta, D. et al. Evidence for genetic overlap between schizophrenia and age at first birth in women. JAMA Psychiatry 73, 497–505 (2016).

    Article  Google Scholar 

  • Day, F.R. et al. Physical and neurobehavioral determinants of reproductive onset and success. Nat. Genet. http://dx.doi.org/10.1038/ng.3551 (2016).

  • Goriely, A., McGrath, J.J., Hultman, C.M., Wilkie, A.O. & Malaspina, D. “Selfish spermatogonial selection”: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders. Am. J. Psychiatry 170, 599–608 (2013).

    Article  Google Scholar 

  • Power, R.A. et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry 70, 22–30 (2013).

    Article  Google Scholar 

  • Uher, R. The role of genetic variation in the causation of mental illness: an evolution-informed framework. Mol. Psychiatry 14, 1072–1082 (2009).

    Article  CAS  Google Scholar 

  • Sullivan, P.F., Kendler, K.S. & Neale, M.C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    Article  Google Scholar 

  • Lichtenstein, P., Carlström, E., Råstam, M., Gillberg, C. & Anckarsäter, H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am. J. Psychiatry 167, 1357–1363 (2010).

    Article  Google Scholar 

  • Ronald, A. & Hoekstra, R.A. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B, 255–274 (2011).

    Article  Google Scholar 

  • Gratten, J., Visscher, P.M., Mowry, B.J. & Wray, N.R. Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat. Genet. 45, 234–238 (2013).

    Article  CAS  Google Scholar 

  • Gaugler, T. et al. Most genetic risk for autism resides with common variation. Nat. Genet. 46, 881–885 (2014).

    Article  CAS  Google Scholar 

  • Goriely, A. et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat. Genet. 41, 1247–1252 (2009).

    Article  CAS  Google Scholar 

  • Moloney, D.M. et al. Exclusive paternal origin of new mutations in Apert syndrome. Nat. Genet. 13, 48–53 (1996).

    Article  CAS  Google Scholar 

  • Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).

    Article  CAS  Google Scholar 

  • Sanders, S.J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Article  CAS  Google Scholar 

  • Lauritsen, M.B., Pedersen, C.B. & Mortensen, P.B. Effects of familial risk factors and place of birth on the risk of autism: a nationwide register-based study. J. Child Psychol. Psychiatry 46, 963–971 (2005).

    Article  Google Scholar 

  • Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009).

    Article  CAS  Google Scholar 

  • Leitsalu, L. et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2015).

    Article  Google Scholar 

  • Power, R.A. et al. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat. Neurosci. 18, 953–955 (2015).

    Article  CAS  Google Scholar 

  • Klei, L. et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol. Autism 3, 9 (2012).

    Article  Google Scholar 

  • Lee, S.H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250 (2012).

    Article  CAS  Google Scholar 

  • Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  Google Scholar 

  • Collins, F.S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  Google Scholar 

  • International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

  • Levinson, D.F. et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am. J. Psychiatry 168, 302–316 (2011).

    Article  Google Scholar 

  • Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  Google Scholar 

  • Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008).

    Article  CAS  Google Scholar 

  • Sandin, S. et al. The familial risk of autism. J. Am. Med. Assoc. 311, 1770–1777 (2014).

    Article  CAS  Google Scholar 

  • 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  • Keightley, P.D. Rates and fitness consequences of new mutations in humans. Genetics 190, 295–304 (2012).

    Article  Google Scholar 

  • Grether, J.K., Anderson, M.C., Croen, L.A., Smith, D. & Windham, G.C. Risk of autism and increasing maternal and paternal age in a large North American population. Am. J. Epidemiol. 170, 1118–1126 (2009).

    Article  Google Scholar 

  • Falconer, D.S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet. 29, 51–71 (1965).

    Article  Google Scholar 

  • Reich, T., James, J.W. & Morris, C.A. The use of multiple thresholds in determining the mode of transmission of semi-continuous traits. Ann. Hum. Genet. 36, 163–184 (1972).

    Article  CAS  Google Scholar